Collapse of Biodiversity – Causes and What We Can Do

frogs in California killed by chytrid fungus
photo by Rick Kyper, US Fish and Wildlife Service

I expect you have heard about the report issued on May 6 by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The executive summary is available here

Based on thousands of scientific studies, the report concludes that the biosphere, upon which humanity as a whole depends, is being altered to an unparalleled degree across all spatial scales. The trends of decline are accelerating. As many as 1 million species (75% of which are insects) are threatened with extinction, many within decades.

Humans dominate Earth: natural ecosystems have declined by 47% on average. Especially hard-hit are inland waters and freshwater ecosystems: only 13% of the wetland present in 1700 remained by 2000. Losses have continued rapidly since then.

The report lists the most important direct drivers of biodiversity decline – in descending order – as habitat loss due to changes in land and sea use; direct exploitation of organisms; climate change; pollution; and invasive species. The relative importance of each driver varies across regions.

If you have been paying attention, these conclusions are not “news”.

However, the report serves two valuable purposes. First, it provides a global overview, a compilation of all the data and trends. Second, the report ties the direct drivers to underlying causes which are in turn underpinned by societal values and behaviors. Specifically mentioned are production and consumption patterns, human population dynamics and trends, trade, technological innovations, and governance (decision making at all levels, from local to global).

The report goes to great lengths to demonstrate that biological diversity and associated ecosystem services are vital for human existence and good quality of life – especially for supporting humanity’s ability to choose alternative approaches in the face of an uncertain future. The report concludes that while more food, energy and materials than ever before are now being supplied to people, future supplies are undermined by the impact of this production and consumption on Nature’s ability to provide.   

The report also emphasizes that both the benefits and burdens associated with the use of biodiversity and ecosystem services are distributed and experienced inequitably among social groups, countries and regions. Furthermore, benefits provided to some people often come at the expense of other people, particularly the most vulnerable.  However, there are also synergies – e.g., sustainable agricultural practices enhance soil quality, thereby improving productivity and other ecosystem functions and services such as carbon sequestration and water quality regulation.

The report contains vast amounts of data on the recent explosion of human numbers and – especially – consumption – of agricultural production, fish harvests, forest products, bioenergy production … and on the associated declines in “regulating” and “non-material contributions” ecosystem services. In consequence, the report concludes, these recent gains in material contributions are often not sustainable.

While invasive species rank fifth as a causal agent of biodiversity decline globally, alien species have increased by 40% since 1980, associated with increased trade and human population dynamics and trends. The authors report that nearly 20% of Earth’s surface is at risk of bioinvasion. The rate of invasive species introduction seems higher than ever and shows no signs of slowing.

The report notes that the extinction threat is especially severe in areas of high endemism. Invasive species play a more important role as an extinction agent in many such areas, especially islands. However, some bioinvaders also have devastating effects on mainlands; the report cites the threat of the pathogen Batrachochytrium dendrobatidis to nearly 400 amphibian species worldwide.

The report also mentions that the combination of species extinctions and transport of species to new ecosystems is resulting in biological communities – both managed and unmanaged — becoming more similar to each other — biotic homogenization.

The report notes that human-induced changes are creating conditions for fast biological evolution of species in all taxonomic groups. The authors recommend adopting conservation strategies designed to influence evolutionary trajectories so as to protect vulnerable species and reduce the impact of unwanted species (e.g., weeds, pests or pathogens).

The report says conservation efforts have yielded positive outcomes – but they have not been sufficient to stem the direct and indirect drivers of environmental deterioration. Since 1970, nations have adopted six treaties aimed at protection of nature and the environmental, but few of the strategic objectives and goals adopted by the treaties’ parties are being realized. One objective that is on track to partial achievement is the Aichi Biological Diversity Target that calls for identification and prioritization of invasive species. 

That might well be true – but I would not consider global efforts to manage invasive species to be a success story in any way. I have blogged often about studies showing that introductions continue unabated … and management of established bioinvaders only rarely results in measurable improvements.   [For example, see here and here.]

The report gives considerable attention to problems caused by some people’s simultaneous lack of access to material goods and bearing heavier burden from pollution and other negative results of biodiversity collapse. Extraction of living biomass (e.g. crops, fisheries) to meet the global demand is highest in developing countries whereas material consumption per capita is highest in developed countries. The report says that conservation of biodiversity must be closely linked to sustainable approaches to more equal economic development. The authors say both conservation and economic goals can be achieved – but this will require transformative changes across economic, social, political and technological factors.

One key transformation is changing people’s conception of a good life to downplay consumption and waste. Other attitudinal changes include emphasizing social norms promoting sustainability and personal responsibility for the environmental impacts of one’s consumption. Economic measures and goals need to address inequalities and integrate impacts currently considered to be “economic externalities”. The report also calls for inclusive forms of decision-making and promoting education about the importance of biodiversity and ecosystem services.

Economic instruments that promote damaging, unsustainable exploitation of biological resources (or their damage by pollution) include subsidies, financial transfers, subsidized credit, tax abatements, and commodity and industrial goods prices that hide environmental and social costs. These need to be changed.

Finally, limiting global warming to well below 2oC would have multiple co-benefits for protecting biodiversity and ecosystem services. Care must be exercised to ensure that large-scale land-based climate mitigation measures, e.g., allocating conservation lands to bioenergy crops, planting of monocultures, hydroelectric dams) do not themselves cause serious damage to biodiversity or other ecosystem services.

The threats to biodiversity and ecosystem services are most urgent in South America, Africa and parts of Asia. North America and Europe are expected to have low conversion to crops and continued reforestation.

Table SPM.1 lays out a long set of approaches to achieve sustainability and possible actions and pathways for achieving them. The list is not exhaustive, but rather illustrative, using examples from the report.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

Promising Biocontrol to Protect Some Cacti

Photo of infested cactus at Cabo Rojo National Wildlife Refuge, Puerto Rico. Taken August 20, 2018 by Yorelyz Rodríguez-Reyes

Three and a half years ago, I blogged about the threat to columnar cacti in Puerto Rico from the Harrisia cactus mealybug. The mealybug clearly threatens the endemic cacti of the Caribbean islands, and possibly some of the hundreds of other columnar cacti growing across two million square miles of desert ecosystems that straddle the U.S.-Mexico border region.

I am pleased to report that scientists continue efforts to find biocontrol agents to reduce this insect’s damage on Caribbean islands. Much of this work is being done by the Center for Excellence in Quarantine and Invasive Species at University of Puerto Rico. The team consists of Michael West Ortiz, Yorelys Rodrígues Reyes, Ferdinand Correa and Jose Carlos Verle Rodrigues.

As of February 2019, the Center is conducting host specificity tests on a primary parasitoid of the Harrisia Cactus mealybug — Anagyrus cachamai. This wasp was found as a result of almost a decade of searching in South America and other locations. It is native to Argentina and Paraguay (Triapitsyn et al. 2018; sources listed at the end of the blog).The Center also continues surveys and studies of other primary and secondary parasitoids of the mealybug.

The work to develop a biocontrol agent for the mealybug continues despite continuing uncertainty about the true species of the mealybug. At the time of its discovery on Puerto Rico, the mealybug was believed to belong to a species used as a biocontrol agent for invasive cacti in Australia and South Africa, designated as Hypogeococcus pungens. However, H. pungens is now thought to be a species complex, and the species in Puerto Rico differs from the earlier designation (Triapitsyn et al. 2018). 

Apparently the mealybug was introduced in Puerto Rico around 2000   — probably on the ornamental common purslane (Portulaca olerácea), an annual succulent. (Note: the introduction was on a host different from the vulnerable cacti.) Within five years of the first detection in San Juan, the mealybug was sighted on cacti on the other side of the island in the Guánica State Forest and Biosphere Reserve. By 2010, the mealybug was widely distributed in most dry districts. Surveys found it in all 11 municipalities surveyed in southern Puerto Rico. At some locations, infestation levels were extremely high – e.g., 86% of stems surveyed were infested at Guánica. Infestation rates were lower in other municipalities. As of 2010, infestations were estimated to be present on about 1,400 km2 on the southern coast; the rate of new infestations suggests that the mealybug was spreading rapidly (Segarra-Carmona et al. 2010).  I have been unable to obtain more recent estimates.

The mealybug impacts seven of 14 native cactus species occurring in dry forests of the island, including three endemic and two endangered species in the subfamily Cactoideae. The two endangered species are Harrisia portoricensis and Leptocereus grantianus (USDA ARS). The tissue damage caused by the mealybug interferes with sexual reproduction and can cause direct mortality of the plant (Triapitsyn et al. 2018).  These cacti provide food or shelter for endemic bats, birds, moths and other pollinators (Segarra & Ramirez; USDA ARS). The mealybug is also now killing native cacti on the U.S. Virgin Islands (H. Diaz-Soltero pers. comm. August 2015).

 USDA Funds Conservation Efforts Despite Apparent Absence of a Constituency Calling for Such Action

Efforts to identify and test possible biocontrol agents targetting the Harrisia cactus mealybug received significant funds from the Plant Pest and Disease Management and Disaster Prevention Program. This is a competitive grant program managed by APHIS. It is permanently funded and thus not subject to the vagaries of annual appropriations. Until last year, this program operated under Section 10007 of the 2014 Farm Bill. With passage of a new Farm Bill, it is now designated as Section 7721 of the Plant Protection Act.

Since Fiscal Year 2018, APHIS has had authority to spend more than $60 million per year on this program.  In Fiscal Year 2017, , the program provided $120,000 to an unspecified federal agency, $70,000 to an academic institution in Puerto Rico (presumably the Center), $15,000 to another academic institution in California, and $3,000 divided among two APHIS facilities – for a total of $208,000. The next round of funds came in FY19, when the program provided $277,267 to an unspecified federal agency to continue work on biocontrol. In addition, the program provided $78,507 to an unspecified federal agency to “safeguard[e] genetic diversity of native and listed cacti threatened by Harrisia cactus mealybug in Puerto Rico”.

No Apparent Action on Threats to Opuntia Cacti

In my earlier blog, I also described the threat to flat-padded Opuntia (prickly pear) cacti from the cactus moth Cactoblastis cactorum. Various federal, state, and academic entities received $463,000 from the permanent fund in Fiscal Year 2016 and another $100,000 in FY2017. No cactus moth programs have received funds in more recent years.

SOURCES

Segarra-Carmona, A.E., A. Ramirez-Lluch. No date. Hypogeococcus pungens (Hemiptera: Pseudococcidae): A new threat to biodiversity in fragile dry tropical forests.

Segarra-Carmona, A.E., A. Ramírez-Lluch, I. Cabrera-Asencio and A.N. Jiménez-López. 2010.  FIRST REPORT OF A NEW INVASIVE MEALYBUG, THE HARRISIA CACTUS MEALYBUG HYPOGEOCOCCUS PUNGENS (HEMIPTERA: PSEUDOCOCCIDAE). J. Agrie. Univ. RR. 94(1-2):183-187 (2010)

Triapitsyn, Aguirre, Logarzo, Hight, Ciomperlik, Rugman-Jones, Rodriguez. 2018. Complex of primary and secondary parasitoids (Hymenoptera: Encyrtidae and Signiphoridae) of Hypogeococcus spp. mealybugs (Hemiptera: Pseudococcidae) in the New World. Florida Entomologist Volume 101, No. 3 411

USDA Agriculture Research Service, Research Project: Biological Control of the Harrisia Cactus Mealybug, Hypogeococcus pungens (Hemiptera:pseudococcidae) in Puerto Rico Project Number: 0211-22000-006-10 Project Type: Reimbursable

West Ortiz, M. pers. comm. February 2019

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

National Academies Endorse Suite of Pest Control Programs — and a Brand New Regulatory System for Biotech Trees

a blight-resistant chestnut tree bred using traditional breeding techniques by The American Chestnut Foundation; photo by F.T. Campbell

Nearly one-third of the continental United States is covered by forests, more than 1 million square miles. As demonstrated by many authorities and – I hope! – in my blogs, these forests face increasing threats, including introduction of rising numbers of non-native insects and pathogens that kill or severely damage the tree species that comprise those forests.

One response has been a request by the U.S. Endowment for Forestry and Communities, the Environmental Protection Agency, and U.S. Department of Agriculture (Agricultural Research Service, Animal and Plant Health Inspection Service, U.S. Forest Service, and National Institute of Food and Agriculture) that the National Academies of Sciences, Engineering, and Medicine consider the potential for the use of biotechnology to mitigate these threats to forest health.

The resulting report was released in January 2019 (see full citation at the end of the blog). The report is 240 pages long, very thorough, and wide-ranging. It does have a 12-page summary, listing the Panel’s many conclusions and its recommendations. While the preponderance of the report concerns forests on the North American continent, the panel did seek information about threats to endemic trees in Hawai`i, which (to my mind) are especially severe. See earlier blogs here and here.

To me, one of the report’s most important conclusions is that while there are multiple options for dealing with forest pests, their feasibility and success vary widely. Saying that no single management practice is likely to be effective by itself, the report calls for increasing investment in the full range of strategies other than biotechnology, i.e.,

  • preventing arrival of non-native pests (recognized as the first line of defense and the most cost-effective strategy);
  • site management practices;
  • biocontrol; and
  • enhancement of genetic resistance naturally present in affected tree species (including developing  human capital in professions related to tree breeding).

The panel was not asked to examine the potential for biotech to reduce threats to forest health by altering the pests affecting North American tree species so it does not do so.

Summarizing the Threat

Citing Aukema et al. 2010 and other sources, the Academy panels reports that approximately 450 species of insects and at least 16 species of pathogens have been introduced and have established in continental U.S. forests. Of those, 62 insects and all of the pathogens are determined to have a high impact. A USDA Forest Service study estimates that 81.3 million acres (about 7% of all forested or treed land in the U.S.) are at risk of losing at least 25% of tree vegetation by 2027 due to insects and pathogens. These pests are both non-native, introduced species and native pests that are spreading to new regions as a result of climate change.

The Academy panel notes that loss of a tree species can have cascading adverse effects on the forest ecosystem and on the range of services it provides and the values it represents to human populations.

Part A. The Technology for Trees

The Academy panel was asked to assess the ecological, economic, and social implications of deploying genetically engineered trees. The experts also were asked to identify the knowledge needed to evaluate the ways such a tree might affect the prospects for forest health. The analysis was to include social and cultural impacts as well as impacts on forest and associated ecosystems – including their structure, composition, processes, function, productivity, and resilience.

This use of biotechnology to restore healthy forests differs from applications in industrial plantations or annual agricultural crops in that the biotech tree is intended to proliferate in a natural forest setting.

The authors chose four taxa — American chestnut (Castanea dentata), whitebark pine (Pinus albicaulis), ash (Fraxinus spp.), and poplars (Populus spp.) — to illustrate the variety of threats to forest health and efforts to date to protect the resource.

The committee defined forest health as:

A condition that sustains the structure, composition, processes, function, productivity, and resilience of forest ecosystems over time and space.

The panel says that “forest health” is assessed based on current knowledge and is influenced by human needs, cultural values, and land management objectives.

1. A Balanced Analysis

The report does not hype biotechnology for solving problems. The panel called for research on even the foundational question: whether resistance imparted to tree species through a genetic change will be sufficient to persist in trees that are expected to live for decades to centuries as well as in the generations they parent.

The report compares the two approaches to enhancing genetic resistance to pests, i.e., selective (traditional) breeding and relying on biotechnology. Both involve multiple steps, expense, and risks of pursuing what ultimately turn out to be dead ends.

Thus, in traditional selective breeding, scientists must complete the following steps:

1) Determine whether genetic resistance exists within the affected tree species’ population. According to the Academy report, while many tree species have some degree of resistance to particular native or non-native pests, finding suitable parent trees can be difficult, and even when they are found, not all the progeny will be resistant.

2) Evaluate the durability of resistance in order to protect trees over decades.

3) Propagate the resistant progeny in greenhouses or seed orchards to create sufficient resistant genotypes for restoration and reforestation. Many tree species are difficult to propagate using cell culture and regeneration.

In applying biotechnology techniques, scientists must complete the following steps:

1) Identify the genes carrying pertinent traits – which are to be modified, introduced, or silenced. Scientists don’t know what genetic mechanisms underlie important traits. This discovery process is more difficult for tree species than for agronomic crops due to the plants’ large size, long generation time, and (in the case of conifers) immense genomes. Another problem is that forest trees have high levels of heterozygosity due to their large population sizes and outcrossing breeding systems, which complicates genome assembly and modification. Still, recent technological improvements are making this identification process easier.

2) Insert the genes using various biotechnology tools such as transgenesis and genome editing.

3) Produce trees containing the desired gene sequence to regenerate plants from disorganized callus tissue. As noted above, many tree species are difficult to propagate using cell culture and regeneration. Even when this approach is possible, the regeneration of a plant from a single cell may not produce an individual that has the desired genetic change in every cell.

The time line for applying either approach to protect forest health will depend on several factors, including the biology of both the tree and the pest, and the environments in which the target tree species exists. It can vary from a few years to multiple decades.

2. Who Should Carry Out Genetic Improvement of Trees (and by implication, all long-term strategies to protect forest health)?

Trees provide private as well as public benefits, such as income from timber sales. However, the costs of developing a genetically resistant tree – whether achieved through traditional breeding or biotechnology processes – will be incurred up front and the benefits will follow later – often decades or even centuries later. Consequently, the sponsors need a long time horizon!  

The panel suggests that the public sector can have greater patience when it perceives that significant public benefits will be forthcoming. The private sector is not likely to invest in the protection of forest health because it cannot fully capture the benefits that may accrue. The authors define “public sector” to include government agencies and non-profit organizations.

Part B. Impacts, Ethics, and Policy

1. Impacts

The report provides careful analysis of the ecological impacts that should be considered in evaluating the use of biotechnology to maintain or improve forest health. The report emphasizes that if the modified trees are to spread and restore the species to its role in the ecosystem, the modified trees must be competitive in the ecosystem (while not being invasive!). The trees must be suited to the variety of climates and other biophysical conditions found throughout the tree species’ range. The report even said that establishing the rangewide patterns of distribution of the target species’ natural standing genetic variation should be researched before a project is begun aimed at inserting pest resistance genes.

2. Public attitudes and ethical considerations

The panel was charged to consider social, cultural, and ethical issues related to the potential use of biotechnology to develop trees resistant to pests. They devote 13 pages to examining this complex set of issues, which range from Native Americans’ use of black ash to concepts of “wildness” and competing models of “conservation”.  There have been few surveys or other studies of Americans’ attitudes. The panel also notes that the public lacks in-depth knowledge about genetic interventions and processes, so their attitudes are likely to change — for or against use of the technology — as they learn more or associate biotech with strongly held beliefs.

The Panel notes that important ethical questions fall outside any current “impact analysis” evaluation system, or any new analysis that focuses on “ecosystem services”.  It calls for additional research on societal response to biotechnology applied to forest health and development of new forms of engaging full range of stakeholders.

3. Need for a New Impact Assessment Framework

The panel concludes that the current regulatory system does not provide for consideration of most aspects of forest health in assessing the safety of a tree developed through biotechnology, including those described above. Consequently, the panel calls for an entirely new assessment process in order to evaluate both the ecological and social/ethical considerations.

The long-standing Coordinated Framework for the Regulation of Biotechnology relies on existing federal statutes. Under this system, the regulatory agencies (USDA Animal and Plant Health Inspection Service, Environmental Protection Agency, sometimes Food and Drug Administration) regulate specific products, not the process by which the products are produced. For example, USDA regulates only the small subset of biotech trees which were transformed via use of a bacterium, Agrobacterium tumefaciens, to insert the desired trait.

The panel says that an agency undertaking an environmental analysis under the terms of the National Environmental Protection Act would need to add an analysis of some components of forest health.

To rectify these analytical gaps, the panel suggests creation of an integrated impact assessment framework that combines ecological risk assessment with consideration of ecosystem services. This integrated framework would evaluate the effect of the pest threat – and responses to that threat – on forest processes –as well as on associated cultural and spiritual values. The impact assessment must make explicit the links between specific forest protections and their effects on important ecosystem services. The panel points to an EPA guidance document on economic impact analysis (see reference at the end of this blog) as a useful starting point. The panel suggests that this framework should be used to evaluate any forest health intervention, including use of selectively bred trees.

Because of the length of time until tree reproductive maturity and long life span of most trees, collecting data for an impact assessment might take years. The panel suggests adopting a tiered system which would allow field trials of low-risk transgenic trees to reach flowering stage so as to provide data on gene flow and climatic tolerances – data that are essential for a proper impact assessment that would evaluate the likelihood of ultimate success of the restoration effort.  Such experiments and carefully developed models must also identify sources of uncertainty.

Adoption of such a stepwise, iterative process requires abandonment of the current regulatory system, which does not permit the flowering of biotech trees in most cases. 

My Conclusions

The report makes clear several realities:

1) the magnitude of the threat to our forests from non-native pests – which warrants an effective response;

2) the strengths and weaknesses of the several response strategies – none of which can solve this problem in isolation;

3) the scientific challenges that need to be overcome to apply strategies aimed at enhancing tree species’ genetic resistance to pests;

4) the need for greatly expanded programs to implement the various strategies.

Also, the report shows how unprepared our country is to systematically assess the full impacts of new forms of tree breeding and forest health. To rectify this gap, the report also calls for a complete overhaul of the procedures by which the government currently evaluates the environmental risks associated with applying one of the strategies, genetic transformation of the plant host – which is defined (in the Glosssary) as including transgenesis, cisgenesis, RNA interference, genome editing, and insertion of synthetic DNA.

The recommended actions in this report – taken either individually or collectively – require a level of commitment by government and conservation organizations that far exceeds the current level.

I hope the Academies’ prestige can prompt such commitment. For example, development of a sufficiently robust coalition of groups could re-invigorate our society’s response to the invasive pest threat. The report has received some encouraging attention. It was reported in Nature and Scientific American. About 130 people tuned in live to the launch webinar on January 8th. So far, almost 1,200 people have downloaded the report.

The government shutdown has delayed the sponsoring agencies’ (USDA and EPA)  official reactions to the report. It probably curtailed some publicity efforts among all the sponsoring agencies. Also, the report will be only one item in the overflowing inboxes of agency scientists and managers after 35 days on furlough. I hope it won’t be lost, especially with the threat of a second shut-down.  

How can those of us in the public who care about our forests ramp up our activity to support these recommendations?

A reminder: Scott Schlarbaum and I addressed the need for a greatly expanded restoration component as part of a comprehensive response to non-native tree-killing pests in our report Fading Forests III, released five years ago. It is available here.

SOURCES

Aukema, J.E., D.G. McCullough, B. Von Holle, A.M. Liebhold, K. Britton, & S.J. Frankel. 2010. Historical Accumulation of Nonindigenous Forest Pests in the Continental United States. Bioscience. December 2010 / Vol. 60 No. 11

National Academies of Sciences, Engineering, and Medicine. 2019. Forest Health and Biotech: Possibilities and Considerations. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/25221.

U.S. Environmental Protection Agency. 2014. Guidelines for Preparing Economic Analyses. Washington, D.C.

South African report: Rigorous, Honest, and a Model for U.S. and Others

Density of invasive plants in South Africa

map available here

 

Last month, in my blog about the US Geological Survey’s report on invasive species  I announced release of a report by South Africa on its invasive species management programs – available here.  Because this report is unusual in both its rigor and its honesty, I’m returning to it here. I think it is a model for our country and others.

The report provides the basics. That is, it analyzes pathways of introduction and spread; number, distribution and impact of individual species; species richness and abundance of alien species in defined areas; and the effectiveness of interventions. Of the 775 invasive species identified to date, 556, or about 72%, are listed under some national regulatory program. Terrestrial and freshwater plants number 574 species; terrestrial invertebrates number 107 species. A different set of 107 species, or about 14%, are considered by experts to be having major or severe impacts on biodiversity and/or human wellbeing. The highest numbers of alien species are in the savanna, grassland, Indian Ocean coastal belt, and fynbos biomes. South Africans are particularly focused on the reductions in surface water resulting from plant invasions. Much of the control effort is under the egis of the decades-old “Working for Water” program.

Also, the report has features that are all-too-rare in work of its kind. First is the authors’ focus on rigor – of data sources and interpretation of those data using standardized criteria. Second – and even more important – is their call for analyzing the efficacy of the components of invasive species program. They insist on the need to measure outcomes (that is, results), not just inputs (resources committed) and outputs (“acres treated”, etc.). Inputs are far easier to measure and are, unfortunately, the mainstay of how most U.S. efforts are tracked – if they are tracked at all.

As they note, measure of inputs and outputs are not useful because they provide no guidance on the purpose of the action or treatment or of its effectiveness in achieving that purpose.

(For earlier CISP advocacy of measuring outcomes, visit the National Environmental Coalition on Invasive Species and read the bullet points under “Recommendations for a Comprehensive National Response”.)

The report has been praised by international conservationists, including Piero Genovesi – chair of the IUCN’s Invasive Species Specialist Group. British ecologist Helen Roy says that, to her knowledge, it is “the first comprehensive synthesis of the state of invasive species by any country.”

 

How well are programs working?

The authors’ focus on rigor includes being scrupulously honest in their assessments of current program components. They note deficiencies and disappointments, even when the conclusions might be politically inconvenient. To be fair, all countries struggle to achieve success in managing bioinvasions. And South Africa is, in many ways, a developing country with a myriad of economic and social challenges.

So it is probably not surprising that, for most factors analyzed, the authors say data are insufficient to determine the program’s impact. Where data are adequate, they often show that programs fall short. For example, they conclude that control measures have been effective in reducing populations of established invasive species, usually plants, in some localized areas but not in others. While the situation would arguably have been worse had there been no control, current control efforts have not been effective in preventing the ongoing spread of IAS when viewed at a national scale. Only one of South Africa’s 72 international ports of entry has consistent inspection of incoming air passengers and cargo – and even those inspections are not carried out outside of regular working hours (e.g., nights and weekends).

The authors are even critical of the “Working for Water” program – which is the basis for most control efforts in South Africa and enjoys wide political support. WfW has two goals: providing employment and development opportunities to disadvantaged individuals in rural areas, and managing invasive alien plants. Despite substantial funding, the WfW program has supported control teams that have reached only 2% – 5% of the estimated extent of the most important invasive plants. Furthermore, programs structured to provide employment have not ensured use of the most efficient control strategies.

 

What’s needed in South Africa — and around the world

The authors conclude that South Africa needs new processes to monitor and report on bioinvasions in order to achieve evidence-based policy and management decisions. They call for (1) more research to determine and assess invasive species impacts; (2) better monitoring of the effectiveness of current control measures; and (3) the development of methods to look at the impact of bioinvasions and their management on society as a whole.

The authors say it is important for South Africa to improve its management of invasive species because their impacts are already large and are likely to increase significantly. They note that improving management efficiency will require difficult choices and trade-offs. They recommend a focus on priority pathways, species, and areas. They also stress return on investment.

 

I don’t know how this report has been received in South Africa. I hope government officials, media observers, landowners, political parties, and other stakeholders appreciate the honesty and expertise involved. I hope they take the analyses and recommendations seriously and act on them.

(Preparation of the report was was overseen by a team of editors and contributing authors employed by the South African National Biological Diversity Institute (SANBI) and the DST-NRF Centre of Excellence for Invasion Biology at (C.I.B). Drafts were widely circulated to contributing authors and other stakeholders for comments. An independent review editor will be appointed to assess the review process and recommend any ways to strengthen the process for future reports.)

 

Meanwhile, how do we Americans apply the same rigor to analyzing our own efforts?

 

Posted by Faith Campbell

 

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

 

Scientists Document Alarming Declines in Insects

Luquillo Forest in Puerto Rico

While I usually blog about insects (and plant pathogens) that have invaded new ecosystems and are killing native plant species, I am aware that insects are numerous and vitally important components of the ecosystems in which they evolved. I join others in noting with concern evidence that insect populations in wide-apart areas have declined at very high rates. Insects appear to be affected by the Sixth Extinction Event (concept described here and here) as much as or possibly more than various vertebrate and plant taxonomic groups.

The Zoological Society of London and World Wildlife Fund published this week the 2016 version of the Living Planet report. Based on an analysis of 3,700 vertebrate species (birds, fish, mammals, amphibians and reptiles), the authors concluded that global wildlife populations have fallen by 58% since 1970 (Morelle; see references at the end of the blog).

Dirzo et al. in 2014 provided a very interesting discussion of the impacts of species’ declines in numbers and local extinctions – short of complete extinction. They asserted that “declines in numbers of individuals in local populations and changes in the composition of species in a community will generally cause greater impacts on ecosystem function than global extinctions. Dirzo et al. noted the importance of invertebrates, especially insects, in ecosystem functioning. They stated that the smaller fauna – including insects – “arguably are more functionally important” than charismatic megafauna and called for improved monitoring and study of such taxa, particularly invertebrates,

In their study, Dirzo et al. estimated that, since 1970, Lepidoptera – an order containing many important pollinators – had declined 35% in abundance globally over 40 years. Declines of other insect orders were considerably more. One study they cited found an overall 45% decline for all invertebrate populations over 35 years. More recent studies find decline rates that considerably exceed the estimated decline of 58% in global abundance of wild vertebrates over a 42-year period (Morelle; Hallmann et al.)

A year ago, Hallmann et al. reported a 76% decline in the biomass of flying insects over a 27-year period in Germany. There were seasonal variations; in midsummer, when insect biomass is highest, the decline was 82%. The study was carried out in nature protection areas – that is, places set aside and protected to conserve biological diversity. Hallmann et al. predict cascading effects on food webs and jeopardy to ecosystem services, including pollination, herbivory and breakdown of detritus, nutrient cycling and providing a food source for higher trophic levels such as birds, mammals and amphibians.

Hallmann et al. said that changes in weather, land use, and habitat characteristics could not explain this overall decline. Declines occurred in both nutrient-poor habitat types (e.g., heathlands, sandy grasslands, and dunes) and nutrient-rich habitats (grasslands, margins and wasteland), as well as in pioneer and shrub communities.

Another of the few studies looking at insects broadly, a study of flying insect biomass in the United Kingdom, found a biomass decline at only one of the four sites. Hallmann et al. note that the British researchers used considerably different sampling methods that targetted primarily high-flying insects (and caught mostly members of one fly family) whereas their own Malaise traps caught  insects flying close to the ground and a much wider diversity of taxa.

Taxon-specific studies have also found severe declines in insect populations.

Hallmann et al. concluded that the scale of decline in insect biomass – throughout the growing season, and irrespective of habitat type or landscape configuration – suggest that large-scale factors must be involved. As noted, their data did not support either landscape changes or climate change as explanatory factors – although they admit that they did not exhaustively analyze the full range of climatic variables that could potentially impact insect biomass. Hallmann et al. did think that agricultural intensification (e.g. pesticide usage, year-round tillage, increased use of fertilizers and frequency of agronomic measures) was a plausible cause of insect biomass decline given the reserves’ limited size in typically fragmented western-European landscapes. The noted that the protected areas might serve as insect sources which might be counterbalanced by the surrounding agricultural fields, which might act as sinks or ecological traps.

While Hallman et al. did not specify the types of pesticides being used by the German farmers operating near their study areas, in recent years there has been growing concern about widespread use of neonicotenoids, which appear to pose a threat to bees and possibly other insects. Three sources of information are the European Food Safety Agency; Xerxes Society; and petition pertaining to regulation of seeds treated by neonicotenoids submitted by the Center for Food Safety.

This month, Bradford Lister and Andrés García published a study that compared numbers of the insects and insectivores (birds, frogs, lizards) in Puerto Rico’s tropical rainforest in 2012 to results of Lister’s studies there in 1976 and 1977. Overall arthropod biomass in Puerto Rico’s Luquillo rainforest fell 10 to 60 times since 1970s (Lister and Garcia). Numbers of insects in the vegetation collected by sweep nets decreased to a fourth or an eighth of what they had been. The catch rate of ground-dwelling arthropods caught in sticky traps fell 60-fold (Guarino).

Lister and Garcia attribute the crash in arthropod numbers to climate change, especially rising maximum temperatures. They note that over the same 40-year period, the average high temperature in the rainforest increased by 4 degrees Fahrenheit (2oC). Lister and Garcia cite several studies indicating that tropical invertebrates are adapted to a narrow band of temperatures.

Lister and Garcia also measured declines among insect-feeding vertebrates. The biomass of anole lizards dropped by more than 30%. Some anole species disappeared from the interior forest (Guarino). Declines in number of coqui frogs (Eleutherodactylus spp) began in the 1970s. Currently, three of 16 species are extinct, and the remaining 13 species are classified in some category of endangered or threatened. Disease caused by the fungus Batrachochytrium dendrobatidis is not a factor at the elevations where study done.

Anolis gundlachi; photo by Joe King

Citing data from other researchers, Lister and Garcia report that numbers of insectivorous birds captured in mist nets fell 53% between 1990 and 2005.

Lister and Garcia sought to explain why there were simultaneous, long-term declines in arthropods, lizards, frogs, and birds over the past four decades in the relatively undisturbed rainforests of northeastern Puerto Rico. They concluded that climate warming has been a major factor driving reductions in arthropod abundance, and that these declines have in turn precipitated decreases in forest insectivores in a classic bottom-up cascade.

As supporting evidence, Lister and Garcia cite

(1) Declines across varied species and communities that occurred in parallel with rising temperatures.

(2) Simultaneous declines of all arthropod taxa in their own and others’ studies – pointing to an overriding environmental factor that has had ubiquitous, adverse effects on forest arthropods regardless of taxonomic affiliation, stratum occupied, or type of niche exploited.

(3) Declines in arthropod abundance that occurred despite major decreases in their predators – and, presumably, reduced predatory pressure..

Lister and Garcia note that there have been almost no significant human perturbations in the Luquillo forest since the 1930s, and that pesticide use in Puerto Rico fell nearly 80% over the past 40 years with the decrease in agricultural activity on the island. Some of the insect trend data came from studies carried out in the Luquillo Long Term Ecological Study site.

Lister and Garcia say that major weather perturbations have also had an impact. Over the 36-year time span, there have been five major hurricanes and eight severe droughts. They note that the island’s vegetation regenerated rapidly after hurricanes Hugo and Maria; insect populations regenerated rapidly after Hurricane Georges.  La Niña episodes led to an immediate increase in the abundance of canopy invertebrates, whereas El Niño episodes caused declines.

Of course, some insects are under threat from loss of their primary food plants to invasive species.  I note particularly the Palamedes swallowtail butterfly (Papilio palamedes), which depends on redbay and swamp bay, and an estimated 21 species of North American butterflies and moths believed to specialists or largely dependent on ash.

Palamedes swallowtail; photo by Vincent P. Lucas

 

 

In some cases, e.g., hemlock woolly adelgid and Asian longhorned beetle, neonicotenoids, specifically imidacloprid, is an essential tool to controlling a tree-killing invasive insect.

 

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

SOURCES

Dirzo, R., H.S. Young, M. Galetti, G. Ceballos, N.J. B. Isaac, B. Collen. 2014. Defaunation in the Anthropocene. Science 345, 401

Guarino, B. 2018. ‘Hyperalarming’ study shows massive insect loss. 2018. The Washington Post October 15 2018

Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12 (10): e0185809. https://doi.org/10.1371/journal. pone.0185809

Lister, B.C. and A. Garcia. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences. http://www.pnas.org/content/early/2018/10/09/1722477115

Morelle, R. Science Correspondent, BBC News. 2018. World wildlife ‘falls by 58% in 40 years’ https://www.bbc.com/news/science-environment-37775622

 

 

Farm Bill Update – Please Thank Your Senators Right Away!

U.S. Senate

In May I blogged about adoption by the House of Representatives of its version of the Farm Bill, which will govern a wide range of policies for the next five years. I reported that the bill included weakened versions of a provision CISP has been seeking to establish programs to support long-term strategies to counter non-native, tree-killing insects and pathogens, e.g., biocontrol and breeding of trees resistant to pests.

I also reported that the House Farm bill contains provisions to which there is significant opposition from the larger environmental community. Several would gut some of our country’s fundamental environmental laws which have protected our health and natural resources since the early to mid-1970s. These provisions would:

  • Allow the U.S. Forest Service and the Interior Department’s Bureau of Land Management to decide for themselves whether an activity might “jeopardize” an endangered species (eliminating the need to consult with the U.S. Fish and Wildlife Service or National Marine Fisheries Service) (Section 8303 of the House Bill);
  • Allow the U.S. Forest Service and Bureau of Land Management to avoid preparing an environmental assessment under the National Environmental Policy Act (NEPA) for a long list of actions which currently must be assessed. That is, they could claim a “categorical exclusion” when taking a wide variety of “critical” actions aimed at addressing several goals. These include countering insect and disease infestations, reducing hazardous fuel loads, protecting municipal water sources, improving or enhancing critical habitat, increasing water yield, expediting salvage of dead trees following a catastrophic event, or achieving goals to maintain early successional forest. These “categorical exclusions” would apply to projects on up to 6,000 acres. (Sections 8311 – 8320); and
  • Require the EPA Administrator to register a pesticide if the Administrator determines that the pesticide, when used in accordance with widespread and commonly recognized practices, is not likely to jeopardize the survival of a species listed under the Endangered Species Act or to alter critical habitat. That is, the Administrator would not be required to consult with the U.S. Fish and Wildlife Service or National Marine Fisheries Service when making such determinations unlike under current law. (Section 9111).

The Senate passed its version of the Farm Bill in late June. Unfortunately, the Senate bill does not include the long-term restoration program CISP seeks. However, it doesn’t include the above attacks on environmental laws, either.

With the current Farm Bill set to expire on September 30th, there is considerable pressure to adopt a final version soon.  House and Senate staffers have been meeting to find common ground. Representatives and Senators who are on the joint Conference Committee – charged with working out the final bill – will hold their first meeting next week, on September 5th.

In preparation for the meetings of the Conference Committee, 38 Senators have written to their two colleagues who will lead the Senate conferees. Their letter voices strong opposition to changing long-standing environmental law:

“These harmful riders, spread throughout the Forestry, Horticulture, and Miscellaneous titles of the House bill, subjected the legislation to unnecessary opposition on the House floor and now complicates [sic] the bipartisan cooperation needed to pass a final conference report.

Again, we write to express our strong opposition to gutting bedrock U.S. environmental and public health protections with provisions that threaten our air, water, lands, and wildlife.”

Senators signing the letter are:

California: Feinstein & Harris;    Colorado: Bennet;    Connecticut: Murphy & Blumenthal;    Delaware: Carper & Coons;    Florida: Nelson;    Hawai`i: Hirono & Schatz;    Illinois: Durbin & Duckworth;    Maryland: Cardin & Van Hollen;    Massachusetts: Warren & Markey;    Minnesota: Klobuchar &  Smith;    Michigan: Peters;    Nevada: Cortez Masto;    New Hampshire: Shaheen & Hassan;    New Jersey: Menendez & Booker;    New Mexico: Udall & Heinrich;    New York: Gillibrand;    Oregon: Wyden & Merkley;    Pennsylvania: Casey; Rhode Island:    Reed & Whitehouse;    Vermont: Sanders;    Virginia: Warner & Kaine;    Washington: Murray & Cantwell;    Wisconsin: Baldwin.

If your Senators signed the letter, please email, call, or write to thank them immediately. If your Senators didn’t  – please urge them to express their support for its content.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

 

 

The United States is Being Left in the Dust on Amphibian Disease Prevention

 

 

For a short time, the U.S. was the world leader in regulating to prevent introduction of a foreign amphibian disease that has caused a deadly epidemic in Northern Europe – and could cause the same outbreaks here. Unfortunately, we have since surrendered our leadership. But, we still can and must act. Here is the story as I have seen it unfold (having begun my advocacy on this particular threat in late 2014).

The fungus Batrachochytrium salamandrivorans (“Bsal”) is carried on the skin of a large number of salamander species; it was first described in 2014. To help prevent Bsal from arriving and killing native salamanders, the U.S. Fish and Wildlife Service (FWS) published its “Interim Rule” in January of 2016 to list 201 salamander species as “injurious wildlife” under the Lacey Act (available here; the list of blocked species is here). The FWS had determined that Bsal caused major die-offs of salamanders in Europe and posed an imminent threat to our U.S. native populations. The fungus, which had very likely been carried from Asia to Europe via the pet trade, is not known to exist in the U.S., which is a very fortunate thing because we are the global “hotspot” for salamander diversity. An array of beautiful and popular species are found across the nation, especially in the Appalachian and south-eastern States and the Pacific Coast States.

That 2016 regulation was an important advance fought for by many amphibian conservation advocates and experts. We were proud that ours was the first government to take proactive steps. Unfortunately, the FWS regulation’s focus on just 201 salamander species — out of more than 650 named species worldwide — meant that the regulation was not protective enough to reliably keep Bsal out (as scientists had stressed to the FWS back in 2015). However, we took hope from the fact that it was an “Interim” regulation responding to the urgency of this new risk and the agency had repeatedly announced it intended to revise it into a Final Rule, which process could toughen it up.  However, two and a half years have gone by with no action.

In the fall of 2017 the new Bsal science was showing even greater risk than was understood before. This was gathered into a comprehensive Scientists’ Statement of Reasons for a Class-wide Moratorium of Amphibians in USA Import Trade to Prevent Entry of Bsal, signed by 12 leading amphibian health experts (available here). Further driving home the need for toughening the Interim Rule, in February of 2018 a crucial paper came out, the Yuan et al. salamander study, Widespread occurrence of an emerging fungal pathogen in heavily traded Chinese urodelan species. (Conserv Lett. 2018;e12436). Reviewing Table 1 therein reveals that​ of ​​8 species that tested positive for Bsal infection in China​, when​ compared to the 201 species regulated under the FWS Interim Rule​, ​at least 3 species were ​positive for ​the infection that are ​​not prohibited from import: Andrius davidianusPachytriton wuguanfui and Paramesotriton aurantius.

To reiterate: the Interim Rule allows unregulated Bsal-infected species from China to be imported. Further, we know the list of native U.S. species regulated under the list of 201 species is underprotective. Knowledgeable scientists say that Bsal can infect and harm at least 5 additional native species beyond those the FWS listed, while many more unlisted species can act as carriers of the pathogen. (That research likely will be published over the course of this and next year.)  In short, the 2016 Interim Rule now looks like Swiss cheese.

Meanwhile, we have given up our Bsal leadership position to Canada, the European Union and the United Kingdom. After first adopting a 1-year import moratorium, Canada now (effective May 12, 2018) prohibits imports of all species of the order Caudata (salamanders, newts and mudpuppies) except via a special permit (available here).  Taking a different approach, at the end of February the European Union recommended a sweeping “Clean Trade” program relying on pre-shipment certifications, applicable to both imports into the EU and trade between member nations (available here).  The EU animal health authorities recommended that members allow no commercial salamander shipments without risk mitigations, such as detailed quarantines and testing of shipments.

Just recently the United Kingdom followed the EU recommendation and adopted a strict health certificate and quarantine approach for salamander and newt imports targeted to prevent Bsal (available here). It involves three, alternative, detailed quarantine options, while allowing importers to propose a different quarantine approach if it is based on peer-reviewed published science.

To make matters look worse for the U.S. by comparison, this Administration has for no clear reason disengaged from the previously-announced FWS plan to finalize the underprotective Interim Rule. There was a public comment period that ended in March of 2016. Because of that now two-year old closed comment period, the FWS officials in charge just this past April flatly refused to meet with a group of salamander experts to discuss the implications of the new science mentioned above. Then, we found out that the FWS actually officially has delayed finalizing the Interim Bsal Rule indefinitely; the agency now classifies it as a “Long-term Action” with no planned date for completion. (Per White House, Office of Management and Budget, Unified Regulatory Agenda, here).

This administrative slow-down is remarkably unfortunate. Rather than reflecting the new realities and proposing a state-of-the-science “Clean Trade” approach like the EU and UK, or mandating a permit for all salamander imports like Canada, or at least adding the other known unlisted Bsal-carrying and Bsal-vulnerable species to the list of 201 prohibited species adopted back in 2016, the FWS now appears content to expose the country to the risk of this devastating wildlife epidemic via unregulated imports.

It would be one thing if there was some overwhelming economic value to salamander imports, but that is not so. Salamander imports make up a tiny part of the pet trade – their total dollar value is paltry compared to other imported animals. Neither the organized pet industry nor anyone else is actively trying to block progressive protections. Indeed, the pet industry will itself benefit greatly from not having Bsal here infecting its own commercial pet supply. And the industry will benefit from not being blamed if or when released pet salamanders spread Bsal into the wild, which is an all-too-likely scenario based on past species and pathogen incursions.

As called for in the 2017 Scientists’ Statement mentioned above, in order to protect our priceless North American salamander fauna we need a “class-wide ban” – at least. This can and should still allow for appropriate exceptions under FWS permits for education, research, display and other important uses as are already provided for under the Lacey Act.

If you would like to get involved in the informal “Bsal Discussion Group” that is engaged in advocacy to improve the FWS regulation, please contact me at: jenkinsbiopolicy@gmail.com.

 

//////////////////////////

PART II, coming soon, will delve into the new science about the “old” emerging amphibian epidemic, Bd, which has devastated frogs and toads across the planet.

 

Posted by Peter Jenkins

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

The 2018 Farm Bill – It’s Complicated!

As you might remember, the Center for Invasive Species Prevention and the Vermont Woodland Owners Association last year proposed several amendments to the Farm Bill that we hoped would strengthen the U.S. Department of Agriculture’s programs on non-native insects, plant pathogens, and invasive plants. These proposed amendments are here and here.

Two of our amendments sought to strengthen funding for long-term strategies to counterpests and restore pest-depleted tree species to the forest. We intended these proposals to be implemented together.  They were put forward as two proposals only because they fell into different sections, called “titles”, of the Farm Bill.

Our first proposal would create a grant program managed by the National Institute of Food and Agriculture (NIFA) to fund research focused on biocontrol and genetic manipulation of the pests; enhancement of host-resistance mechanisms for tree species; and development of other strategies for restoration. U.S. government agencies, state cooperative institutions, academic institutions with a college of agriculture or wildlife and fisheries, and non-profit organizations would all be eligible for funding.

Our second proposal would provide long-term funding to a similar array of organizations to support research into and deployment of strategies for restoring pest-resistant genotypes of native tree species to the forest. We suggested funds be drawn from the McIntyre-Stennis program. Successful grant applicants would be required to integrate several components into a cohesive forest restoration strategy:

  • Collection and conservation of native tree genetic material;
  • Production of sufficient numbers of  propagules of pest-resistant native trees to support landscape scale restoration;
  • Site preparation in native trees’ former habitat;
  • Planting of native tree seedlings; and
  • Post-planting maintenance of the trees.

Furthermore, priorities for competitive grants issued by this second fund would be based on the level of risk to forests in the state where the activity would take place, as determined by the following criteria:

  • Level of risk posed to forests of that state by non-native pests, as measured by such factors as the number of such pests present there;
  • Proportion of the state’s forest composed of species vulnerable to non-native pests present in the United States; and
  • Pests’ rate of spread via natural or human-assisted means.

 

Several coalitions presented these two proposals – in various forms – to the House and Senate Agriculture committees earlier this year.

 

ACTION IN THE HOUSE OF REPRESENTATIVES

The Stefanik Amendment

In the House, Representative Elise Stefanik (R-NY21) inserted a modified version of CISP’s proposed amendments into the Farm Bill (H.R. 2) . Ms. Stefanik’s speech on the House floor introducing her amendment, and support of that amendment by Rep. Glenn Thompson of Pennsylvania and Agriculture Committee Chairman K. Michael Conaway (R-TX) can be heard here; scroll to time 25.16

The Stefanik amendment includes some of the key provisions advocated by CISP but it also differs in significant ways. That is, it relies on an existing grant-making program, the Competitive Forestry, Natural Resources, and Environmental Grants program. This program funds proposals pursuing numerous purposes, including pest management and genetic tree improvement. Rep. Stefanik’s amendment adds a new purpose, restoring forest tree species native to American forests that have suffered severe levels of mortality caused by non-native pests. It is unclear whether this approach will significantly increase resources available for breeding trees resistant to non-native pests.

Another difference is that institutions receiving funds would have to demonstrate that their activity is part of a broader strategy that includes at least one of the following components:

1) Collection and conservation of genetic material;

2) Production of sufficient numbers of propagules to support the tree’s restoration to the landscape;

3) Site preparation of former native tree habitat;

4) Planting; and

5) Post planting maintenance

The original CISP proposal required any funded program to incorporate all of these components.

The Stefanik amendment would award grants based on the same three criteria proposed by CISP.

While we are disappointed that research underlying tree restoration has merely been added to an already-long list of purposes under the Competitive Forestry, Natural Resources, and Environmental Grants program, this approach might be the best we can hope for. There had been considerable opposition to our proposal because it would have changed the formula under which McIntire-Stennis funds are apportioned to the states. Adopted in 1962, the existing formula is based on each state’s

1) area of non-Federal commercial forest land;

2) volume of timber cut annually;

3) total expenditures for forestry research from non-Federal sources;

4) base amount distributed equally among the States.

 

The Faso Amendment

The House also accepted an amendment sponsored by Rep. John Faso (R-NY19) that would require APHIS and the US Forest Service to collaborate on surveillance to detect newly introduced tree-killing pests. The agencies would also report to Congress by 2021 on which pests are being detected on imports of wood packaging and living plants (APHIS’ so-called “plants for planting”) and the geographic origins of those pests. Rep. Faso’s speech introducing the amendment and supportive statements by Reps. Thompson and Conaway can be heard here; scroll to time 32 (immediately after the Stefanik amendment).

 

The Welch Bill

Meanwhile, as I blogged earlier, Rep. Peter Welch (D-VT) has introduced a separate bill (H.R. 5519) that contains modified versions of several CISP proposals.

Rep. Welch’s bill would do two things: strengthen APHIS’ access to “emergency” funds to respond to invasive pests, and create a competitive grant program to support research on biological control of plant pests or noxious weeds, enhancing host pest-resistance mechanisms, and other strategies for restoring tree species. These studies must be part of comprehensive forest restoration research. Eligible institutions would include federal and state agencies, academic institutions, and nonprofit organizations. Funding  would come from a USDA corporation, the Commodity Credit Corporation so they would not be subject to annual appropriations.

The House has taken no action on Rep. Welch’s bill.

 

THE CURRENT STATUS OF THE FARM BILL – AND CISP’s BOTTOM LINE

On 17 May,  the House of Representatives failed to pass the Farm Bill. No Democrats voted for the bill. About 30 Republicans also voted against the bill – not because they objected to its contents, but because they wanted to force a vote on an immigration bill. House leaders now promise a new vote on the Farm Bill on June 22nd.

Is this good news? As I said, it is complicated! The House bill contains several provisions to which there is significant opposition. The most controversial is a requirement that recipients of food stamps prove that they are working. Other provisions – which have not received much attention in the media, would:

  • Allow the U.S. Forest Service and the Interior Department’s Bureau of Land Management to decide for themselves whether an activity might “jeopardize” an endangered species (eliminating the need to consult with the U.S. Fish and Wildlife Service or National Marine Fisheries Service) (Section 8303);
  • Allow the U.S. Forest Service and Bureau of Land Management to avoid preparing an environmental assessment under the National Environmental Policy Act (NEPA) for a long list of actions which currently must be assessed. That is, they could claim a “categorical exclusion” when taking a wide variety of “critical” actions aimed at addressing several goals. These include countering insect and disease infestations, reducing hazardous fuel loads, protecting municipal water sources, improving or enhancing critical habitat, increasing water yield, expediting salvage of dead trees following a catastrophic event, or achieving goals to maintain early successional forest. These “categorical exclusions” would apply to projects on up to 6,000 acres. (Sections 8311 – 8320); and
  • Require the EPA Administrator to register a pesticide if the Administrator determines that the pesticide, when used in accordance with widespread and commonly recognized practices, is not likely to jeopardize the survival of a species listed under the Endangered Species Act or to alter critical habitat. Unlike under current law, the Administrator would not be required to consult with the U.S. Fish and Wildlife Service or National Marine Fisheries Service when making such determinations (Section 9111).

The Endangered Species Act, adopted almost unanimously in 1973, requires such “consultations” because experience had shown that agencies proposing projects tended to underestimate the damage that they might cause to imperiled species.  NEPA is one of the foundational statutes of U.S. environment protection; it was adopted in 1970. Finally, the EPA Administrator is supposed to decide whether to allow pesticide use based on science, per a much weaker but still important environmental protection statute, the Federal Insecticide, Fungicide, and Rodenticide Act (originally adopted in 1910; significantly amended in 1972).

Is getting an imperfect and partial program that might stimulate breeding of tree species resistant to invasive pests worth accepting this level of damage to fundamental environmental programs?

I don’t think so.

We don’t yet know what the Senate will do. We hope the Senate bill will support strong conservation programs – including strengthening APHIS and research into and application of long-term strategies such as resistance breeding – while not undermining the foundations of our Nation’s conservation and environmental programs.

Meanwhile, the House should rewrite the Farm Bill to remove the objectionable provisions.

 

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

You Might Be Surprised By Who is Authorized to Manage Wildlife on Federal Lands

mountain goats – introduced onto USFS-managed lands in the Columbia River Gorge at state initiative; in Utah, the state introduced mountain goats on lands adjacent to a USFS Research Natural Area

 

The journal Environmental Law has just published a 135-page article that debunks a common myth of wildlife management – a piece that the U.S. Forest Service tried to quash. The authors’ analysis could affect the introduction of potentially invasive non-native species – and the reintroduction of native ones – on federal lands.

Nie, M., C. Barns, J. Haber, J. Joly, K. Pitt & S. Zellmer. 2017. Fish and Wildlife Management on Federal Lands; debunking state supremacy. Environmental Law, Vol. 47, no. 4 (2017).

The article reviews the legal authority of federal and state governments to manage wildlife on federal lands.  The authors examined wildlife-related provisions within the National Park System, National Wildlife Refuge System, National Forest System, Bureau of Land Management, the special case of Alaska, the National Wilderness Preservation System, and the Endangered Species Act. They also reviewed cases where federal and state agencies came into conflict over wildlife management on federal lands.

Citing the U.S. Constitution, federal land laws, and relevant case law, the authors assert that federal agencies have an obligation, not just the discretion, to manage and conserve fish and wildlife on lands and waters under their management. They say that the often-cited statement that “the states manage wildlife and federal land agencies only manage wildlife habitat” is wrong from a legal standpoint. This is the myth that the article debunks.

Furthermore, the authors find that federal agencies frequently apply their powers in an inconsistent and sometimes even unlawful fashion. Due to political pressures, they may back down when confronted by states wanting to manage wildlife to achieve their own goals – even when the state’s goals conflict with the legally-mandated purposes of the federal land under question. Such goals might include ensuring maximum populations of “game” animals or introduction of species to new habitats – regardless of the potential impact on native plants and animals.

The authors note that federal land and wildlife laws provide ample opportunities for constructive intergovernmental cooperation in wildlife management. They call for truly mutual collaboration by federal, state, and tribal authorities in managing wildlife. However, such cooperation is blocked in part by states choosing to challenge the constitutional powers, federal land laws, and U.S. government supremacy. In addition, the authors contend, most states have not put together programs that address their own conservation obligations. These obligations are inherent in the widely recognized doctrine of wildlife being a public trust to be managed for the present and future benefit of the people, not the government or private individuals.

According to the website of the Forest Service Employees for Environmental Ethics,  posting of a draft of this article on the University of Montana website (where lead author Martin Nie teaches) led the U.S. Forest Service to pressure the university to withdraw the article. The university refused, and the Forest Service ended its contract with Nie and his research center.

The paper can be downloaded here. We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

Posted by Faith Campbell

“Invasive Species Denialism” Increases Exponentially

 

Anthony Ricciardi and Rachael Ryan have analyzed 77 articles published from 1994 to 2016 in scholarly journals and the mainstream media that express some level of “invasive species denialism”. Denialist articles appearing in these publications have increased exponentially over the past three decades, most notably in the mainstream popular press – and they have the graph, fitted to a curve, to prove it.

The authors cite Diethelm and McKee (2009) in defining “science denialism” as “the use of rhetorical arguments to give the appearance of legitimate debate where there is none, with the ultimate goal of casting doubt on scientific consensus.” Similar strategies have appeared in disputes over the dangers of tobacco smoking and climate change.

Ricciardi and Ryan say that “[u]nlike normal scientific debates, which are evidence based, this discourse typically uses rhetorical arguments to disregard, misrepresent or reject evidence in attempt to cast doubt on the scientific consensus that species introductions pose significant risks to biological diversity and ecosystems….” In their view, the “denialist” articles assert an absence of damage from bioinvasion “despite peer-reviewed research that shows otherwise ….”  One example of evidence ignored by the contrarians are several analyses of the causes of endangerment or extinction of vertebrate species listed on the Red List maintained by the IUCN [as reported in my blog from May 2016 link]

Furthermore, these claims are almost always made in the absence of peer review – either in popular media or as opinion articles in scholarly journals. Many of the writers are social scientists and philosophers, not natural scientists. Only five of the 77 articles, or 6%, were published in natural science journals.

Ricciardi and Ryan say that unlike genuine scientific debate, “denialists” reject scientific evidence while repeating claims that have already been refuted in the scientific arena. Often, “contrarians” link invasion biology to xenophobia and latent racism, or otherwise impugn the motives of those engaged in the invasion biology field.

Ricciardi and Ryan consider possible reasons for the rise in “denialist” articles. Possible reasons include anti-regulatory ideologies, distrust of scientific institutions, conflicting values and perceptions of nature, even individuals’ desire for attention. They note that despite the absence of a true scientific controversy, the “denialists’” assertions gain credibility because science reporters think they need to present “both sides” of the argument.

Unlike the situation in the contrived controversies over climate change and risks from tobacco, we at CISP have not found a powerful industry backing the contrarians.

Ricciardi and Ryan express concern that the growing number of articles rejecting decades of research on invasive species might undermine policy initiatives at a time when invasion biology’s relevance to biosecurity, conservation, and ecosystem management is increasing. Gaining public support is critical to the success of such policies.

This concern is especially well-founded given that the authors’ results underestimate the extent of invasive species denialism. That is, they omitted from their analysis articles from internet blogs – known to be major platforms for promoting “science denialisms” – and websites that specifically attack invasion biology.

While Ricciardi and Ryan published this as a “note,” it is packed with information, e.g., references on science denialism, in general; and, in supplementary information, a table citing the 77 denialist articles.

 

SOURCE

INVASION NOTE. Ricciardi, A. & R. Ryan The exponential growth of invasive species denialism. Biological Invasions. Published online 12 September 2017