APHIS – 50 years + plant pest detection month

beech leaf disease – Not one of the plant pests that APHIS is regulating! Photo by Jennifer Koch, USFS

APHIS has reminded us that 2022 is the agency’s 50th year. In its press release, APHIS claims several accomplishments over this period:

  • Eradicating plant pests like European grapevine moth and plum pox from the country, while reducing the impact of others plant diseases, including boll weevil and Mediterranean and Mexican fruit flies;
  • Eradicating serious animal diseases, including highly pathogenic avian influenza, virulent Newcastle disease, and pseudorabies, from the country’s herds and flocks, while reducing the prevalence of other animal diseases like bovine tuberculosis and brucellosis;
  • Improving care for laboratory animals, exhibited animals and other animals;
  • Ensuring genetically engineered plants do not pose a risk to plant health, while keeping up with the ever-changing technology in this field;
  • Reducing the impact of wildlife damage on agriculture and natural resources; and
  • Ensuring safe trade of agriculture commodities across the globe

APHIS also launched a new page on its website to share a series of visual timelines of its history and important milestones.

APHIS also states that USDA) has declared April 2022 to be Invasive Plant Pest and Disease Awareness Month (IPPDAM). The link Invasive Plant Pest and Disease Awareness Month connects you to APHIS’ webpage. Secretary Vilsack asks people to be alert. He noted particularly the risk that pests will hitch a ride on untreated firewood, outdoor gear and vehicles, and soil, seeds, homegrown produce, and plants.

The notice urges people to:

  • Familiarize yourself with the invasive pests that are in your area, and their symptoms. [Faith says – also look for pests not “here” yet – early detection!]
  • Look for signs of new invasive plant pests and diseases and report them to your local Extension officeState department of agriculture or your USDA State Plant Health Director’s office.
  • When returning from travel overseas, declare all agricultural items to U.S. Customs and Border Protection so they can ensure your items won’t harm U.S. agriculture or the environment.
  • Don’t move untreated firewood. Buy local or use certified heat-treated firewood, or responsibly gather it on site where permitted.
  • Source your plants and seeds responsibly. When ordering online, don’t assume items available from foreign retailers are legal to import into the United States. Learn how to safely and legally order plants and seeds online.
  • Don’t mail homegrown plants, fruits and vegetables. You may live in an area under quarantine for a harmful invasive plant pest. You could inadvertently mail a pest.
  • When in doubt, contact your local USDA State Plant Health Director’s office to find out what you need to do before buying seeds or plants online from an international vendor or before mailing your homegrown agricultural goods.

Worldwide – and U.S. – Proliferation of Phytophthora via the Nursery Trade – an Update

Phytophthora cinnanomi killing Ione manzanita in California; photo from Swiecki and Garbelotto, Distribution of Phytophthora cinnamomi within the range of Ione manzanita (Arctostaphylos myrtifolia).   Agreement between the California Department of Fish and Game and University of California

Phytophthora species are plant pathogens in the oomycote group (water molds, closely related to brown algae). More than 160 species have been described; new species are continually being isolated. Many Phytophthora species are deadly to naïve hosts; examples in the United States include sudden oak death, Port-Orford cedar root disease, disease on chestnuts and oaks.

Forests in Europe – especially the United Kingdom – and Australia are also suffering high levels of mortality associated with one or more Phytophthora species.

In recent years, several studies have documented the role of nurseries in spreading non-native Phytophthora species. Two strains of P. ramorum are widespread in European nurseries and in tree plantations and wild heathlands of southwest England, Wales, parts of Scotland, and Ireland. (See here and here.)

In April 2016 I blogged about the situation in Europe described by Jung et al. 2015 (see references at the end of the blog). Jung et al. concluded that diseases caused by Phytophthora pose a substantial threat to both planted landscapes and forest ecosystems across Europe. They found 56 Phytophthora taxa in 66% of 2,525 forest and landscape planting sites that were probably introduced to those sites via nursery plantings.

Barber et al. 2013 reported nine species of Phytophthora associated with a wide variety of host species in urban streetscapes, parks, gardens, and remnant native vegetation in urban settings in Western Australia. Phytophthora spp were recovered from 30% of sampled sites.

A new summary confirms that the threat is similar in North America. In British Columbia, Dale et al. (2017) found more than two times as many Phytophthora species were detected in soil and water samples in urban areas (23) than in natural areas (11). Urban samples also showed a much higher diversity of Phytophthora per site than natural environments. These Phytophthora species had been introduced initially into urban areas and had subsequently spread into native vegetation, particularly in areas near developed sites (wildland-urban interface areas).

Swiecki et al 2018 cite several sources and their own studies to show that the large and increasingly diverse contingent of introduced Phytophthora species pose an increasingly important threat to both urban forests and surrounding native forests and plant communities in California. It is clear that shrubs and herbaceous plants as well as trees are also at risk. These scientists have repeatedly found multiple non-native Phytophthora species at individual sites in northern and southern California sites where nursery stock had been planted. Sampling in 2014 identified about 60 different Phytophthora taxa in restoration planting sites and native plant nurseries. The sampled restoration plantings were mostly located in urban riparian corridors and peri-urban parks, open spaces, or protected watersheds.

I first discussed this issue in a blog in July 2016.

Swiecki et al (2018) have also found that Phytophthora species persist in drier ecosystems. When conditions are too dry for sporangium production, Phytophthora hyphae produce resistant survival structures that can tolerate drying and persist in dead root fragments or soil. In the presence of appropriate stimuli, e.g., moisture and root exudates, resistant structures germinate to produce sporangia or hyphae, leading to new infections. Even relatively short wet periods associated with rain or irrigation can be sufficient to stimulate zoospore release. Swiecki et al (2018) list examples of numerous Phytophthora infestations that developed in dry sites, such as dry foothills of the Sierra Nevada in Amador County, and the Oakland Hills of Alameda & Contra Costa County. Swiecki et al. (2018) also  note that P. cinnamomi has persisted in Australian forests in the absence of known primary hosts.

Phytophthora infections can also persist for decades in soil. In California, Swiecki et al. (2018) mention several examples:

  • Residual cinnamomi inoculum killed young sprouts of susceptible manzanitas (Arctostaphylos myrtifolia and A. viscida) planted on sites that were infected many years earlier.
  • A street planting of cork oaks (Quercus suber) apparently died due to Phytophthora root rot that had occurred 21 years earlier.
  • Both cinnamomi and P. cactorum were recovered from roots and soil beneath affected trees at least 60 years after the site had been a municipal woody plant nursery and adjacent residence.
  • A 7-acre area of native vegetation showing decline & mortality of multiple plant species was infested with multiple Phytophthora spp, including cactorum, P. cambivora, P. crassamura, P. ‘kelmania’ & P. syringae. The site was apparently infected 22 years earlier during a planting of a habitat restoration project using Ceanothus nursery stock. Subsequent spread was primarily downhill from the planting sites, facilitated by water flow, with additional spread along and near trails.

 

The Risk from the Nursery Trade

While Phytophthora-infested soil and plant debris can be transported on tools, vehicles, and shoes, or moved in large quantities when infested soil is excavated, graded, or imported, the principal threat is the nursery trade.

  • Jung et al. (2015) state that widespread contamination of nursery stock was the primary means by which these pathogens were introduced and spread in Europe. They found 49 Phytophthora taxa in 670 European nurseries. Phytophthora species were recovered from more than 90% of the sampled nurseries.
  • Swiecki et al. (2018) say that most of the common Phytophthora species detected in California are distributed globally, moved about with live plants or other infested materials. None is native to California.
  • Swiecki et al. (2018) cite studies reporting that thirteen species of Phytophthora were found in a survey for leaf spots in California nurseries in 2005 and 2006. Sampling of plants in or originating from Calif native plant nurseries alone has yielded about 60 Phytophthora At least eight species of Phytophthora were found in shipments of symptomatic and asymptomatic plants sent from west coast nurseries to Maryland. Parke et al. (2014) identified 28 Phytophthora taxa in four Oregon nurseries.
  • Not all infections are on the West Coast. Swiecki et al. (2081) reports that a survey in Minnesota nurseries of plants with symptoms – primarily on aboveground plant parts – found eleven species of Phytophthora.

Are scientists in other parts of the country looking for Phytophthora? I see no reason to think the situation in California is unique.

The damage caused by Phytophthora infections can be significant. In California and Oregon, sudden oak death,  and Port-Orford cedar root disease, have killed well over a million trees and disrupted the ecosystems of which they are a part. There are multiple locations in Northern California where introduced Phytophthora species, especially P. cinnamomi and P. cambivora, have caused localized to extensive decline and mortality in native forests and shrublands.

Phytophthora dieback has infected more than one million hectares in Western Australia. More than 40% of the native plant species of the region are vulnerable to the causal agent, P. cinnamomi.

Phytophthora dieback in Western Australia

 

Dieback in native forest in Western Australia; photo copyright Western Australian Department of Parks and Wildlife

In the United Kingdom, several Phytophthora species are causing widespread mortality of native shrubs and trees and commercial plantings.

In nearly all the studies, scientists have detected previously unknown pathogen-host relationships.

The threat from spreading pathogens with wide host ranges is not limited to the genus Phytophthora. The fungus Fusarium euwallacea associated with the Kuroshio and polyphagous shot hole borers  is known to kill at least 18 species of native plants in California and additional species in South Africa.    The laurel wilt fungus kills many trees and shrubs in the Lauraceae family. ‘Ohi‘a or myrtle rust kills several shrubs native to Hawai`i and threatens a wide range of plants in the Myrtaceae family in Australia and New Zealand. Some insects also have wide host ranges, including the Kuroshio and polyphagous shot hole borers; and Asian longhorned and citrus longhorned beetles.

When are national and international phytosanitary agencies going to adopt policies and programs that are effective in preventing the continued spread of these highly damaging tree-killing pests? At the national level, APHIS needs to aggressively use two authorities to curtail importation of plant taxa from countries of origin which present a risk of transporting additional species of pathogens:

  • NAPPRA, which allows APHIS to prohibit risky imports until it has conducted a pest risk analysis.
  • Programs under the revised “Q-37” regulations allowing APHIS to work with exporting countries’ phytosanitary officials to implement integrated pest management strategies to ensure that plants are pathogen-free before they are exported.

I have blogged about both programs before – NAPPRA here;  the Q-37 regulation strengthening here.

At the international level, the members of the International Plant Protection Convention (IPPC) must recognize the failure of the international phytosanitary system and explore ways to strengthen it. See my numerous blogs on this topic (beyond those linked to here!) by visiting www.cisp.us or www.nivemnic.us and searching under the category “forest pathogens”.

 

Posted by Faith Campbell

 

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

 

SOURCES

 

Jung, T. et al. 2015 “Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora disease” Forest Pathology. November 2015; available from Resource Gate

Swiecki, T.J., E.A. Bernhardt, and S.J. Frankel. 2018. Phytophthora root disease and the need for clean nursery stock in urban forests: Part 1 Phytophthora invasions in the urban forest & beyond. Western Arborist Fall 2018

Apparently can’t access current (2018) issues of “Western Arborist” on web unless subscribe

 

Study finds “targetted” phytosanitary measures are effective in reducing introductions of plant pests

 

Figure 2 from the article:

The number of new pathogens discovered each year on 131 focal host plant species in New Zealand (closed circles) and the mean annual rate of pathogen arrival estimated from the model (solid blue line), with shading showing the 95% credible interval.

Benjamin A. Sikes and several coauthors (article available here; open access!) find that targetted biosecurity programs can reduce the establishment of nonnative pathogens even while global trade and travel continue to increase.

The study relies on data from New Zealand because that country has more than 150 years of data on phytosanitary policies and pathogen introductions. Do other countries have data that would support a comparative study in order to test the authors’ conclusions more generally?

The study is unusual in analyzing introductions of a variety of forms of pathogens (fungi, oomycetes, and plasmodiophorids) rather than invertebrates. Pathogens pose significant plant health risks but are notoriously difficult to detect. The study used data on plant-pathogen associations recorded in New Zealand between 1847 and 2012. It focused on hosts in four primary production sectors: crops (46 species, including wheat, tomatoes, and onions); fruit trees (30 species, including grapes, apples, and kiwifruit); commercial forestry (42 species, including pines and eucalypts); and pastures (13 species of forage grasses and legumes). In total, 466 pathogen species for which the first New Zealand record was on one of these 131 host plants were included in the study. The pathogens were assumed to have arrived on imports seeds or fresh fruits of plants in the same family as the 131 hosts in the various production sectors.

After calculating each pathogen’s probable date of introduction, the authors compared those dates to contemporaneous levels of imports and incoming international travellers. Sikes et al. applied statistical techniques to adjust their data to the fact that detection of pathogens is particularly sensitive to variation in survey effort.

Findings:

  • The annual arrival rate of new fungal pathogens increased exponentially from 1880 to ~1980 in parallel with increasing import trade volumes. Subsequently rates stabilized despite continued rapid growth in not only imports but also in arrivals of international passengers.
  • However, there were significant differences among the four primary production sectors.
  1. Arrival rates for pathogens associated with crops declined beginning in the 1970s but slightly earlier for those associated with pasture species. These declines occurred despite increasing import volumes.
  2. Arrival rates of pathogens that attack forestry tree species continued to increase after 1960.
  3. Arrival rates for pathogens that attack fruit tree species remained steady while import volumes rose steadily

Sikes et al. attribute these contrasting trends between production sectors to differences in New Zealand’s biosecurity efforts. They record when phytosanitary restrictions targetting the four sectors were adopted and link those changes to reductions in numbers of pathogens detected a decade or so later. They conclude that targetted biosecurity can slow pathogen arrival and establishment despite increasing trade and international movement of people.

Regarding the contrasting situation of the forestry and fruit tree sectors, Sikes et al. note that while phytosanitary inspections of timber imports was initiated in 1949, it focussed primarily on invertebrate pests. In addition, surveys for pathogens on fruit tree and forestry species were less robust than in the cases of crop and pasture species, and the peak survey effort occurred several decades later – in 1980 for fruit trees, 2000 for forestry species.

Furthermore, pathogens of forestry and fruit tree species can be introduced on types of imports other than seeds and fresh fruits, including soil and live plant material (e.g., rootstock) and untreated wood products.

Sikes et al. say there is no evidence of slowed pathogen arrival rates resulting from imposition of post-entry quarantine to live plant material beginning in the 1990s. I find this very troubling. Post-entry quarantine is a high-cost strategy. Still, several plant pathologists have advocated adoption of this strategy because they believed it would be sufficiently more effective in preventing introductions of – especially! – pathogens as to be worthwhile. Do others have data with which to add to our understanding of this disturbing phenomenon?

The authors suggest that introductions of tree-attacking pathogens on rising imports of wood packaging might have swamped decreases in introductions via other vectors. They consider that implementation of International Standard for Phytosanitary Measures (ISPM) No. 15 in 2002 means it is too early to see its impact in detection data. As I have blogged several times, implementation of ISPM#15 by the United States, at least, has reduced presence of detected pests – primarily insects – by 52%.  Little is known about the presence of pathogens on wood packaging – according to some experts, inspectors rarely even look for pathogens. So I think the authors’ suggestion might not fully explain the continuing introduction of pathogens that attack tree species used in plantation forestry in New Zealand.

Prof. Michael Wingfield of South Africa has written numerous articles on the spread of pathogens that attack Eucalyptus on seeds imported to establish plantations in various countries; one such article is available here. This seems a more likely explanation to me.

The study’s analysis demonstrated that the overall rate of non-native fungal pathogen establishment in New Zealand was more strongly linked to changes in import trade volume than to changes in numbers of international passengers arriving on the islands. Although Sikes et al. don’t explicitly raise the question, they note that New Zealand has put considerable effort into screening incoming people – which appears from these data to have a smaller payoff than imposing phytosanitary controls on imports.

Recent declines in surveys mean the authors must estimate current pathogen arrival rates. The data gaps exacerbate the inevitable uncertainty associated with the time lag between when an introduction occurs and when it is detected. They estimate that an average of 5.9 new species of fungal pathogens per year have established on the focal host plant species since 2000. They estimate further that 55 species of pathogens are present in New Zealand but have not yet been detected there.

I am quite troubled by the reported decline in New Zealand’s postborder pathogen survey efforts since about 2000. This appears very unwise given that the risk of new introductions of pathogens that attack fruit and forestry trees continues – or even rises! Indeed, scientists associated with the forestry industry note the risk to Douglas-fir and Monterrey (Radiata) pine plantations from the pitch canker fungus Fusarium circinatum – which could be introduced on imported seeds, nursery stock, and even wood chips. Radiata pine makes up 92% of softwoods planted – and exotic softwoods constitute 97% of the plantation forestry industry.

Furthermore, non-native pathogens threaten New Zealand’s unique forest ecosystems. Since this study focused on non-native plant hosts, it does not address the risk to native forest species. However, the threat is real: Kauri trees – the dominant canopy species in some native forest types – is suffering from a dieback caused by an introduced Phythopthora.  Also, two other pathogens threaten the many trees and shrubs in the Myrtaceae family found in New Zealand – Puccinia rust (which is established in Australia but not New Zealand) or the Ceratocystis fungi causing rapid ohia death – both threaten native forests in Hawai`i, as discussed in a recent blog.

Posted by Faith Campbell

 

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

APHIS Nursery Stock Regulations (Q-37) – Modernization Finally Completed!

citrus longhorned beetle – entered country several times in imported bonzai plants

After about 20 years, APHIS has finalized important changes to the regulations which govern imports of living plants (what they call “plants for planting”; the regulation is sometimes called “the Quarantine 37” rule).  The new regulation takes effect on April, 18, 2018.

I congratulate APHIS on this important achievement!

[Twenty years is a long time – so changes happen. When APHIS released its Advance Notice of Proposed Rulemaking (ANPR) in December 2004 and its proposed rule in April 2013, I was employed by The Nature Conservancy and submitted comments for that organization. I will refer to those earlier comments in this blog. However, I now represent the Center for Invasive Species Prevention, so my comments here on the final regulations reflect the position of CISP, not the Conservancy.]

APHIS’ 2004 ANPR came after years of preparation. Then, more than eight years passed until the formal proposal was published on April 25, 2013. Comments were accepted from the public until January 30, 2014. During this nine-month period, 17 entities commented, including producers’ organizations, state departments of agriculture, a foreign phytosanitary agency (The Netherlands), private citizens, and The Nature Conservancy. [You can view the ANPR and proposal, comments on these documents, and APHIS’ response here — although you need to click on “Restructuring of Regulations on the Importation of Plants for Planting” and then “Open Docket Folder” to pursue the older documents.]

In the beginning, APHIS had a few goals it hoped to achieve: to allow the agency to respond more quickly to new pest threats, to apply practices that are more effective at detecting pests than visual inspection at points of import, and to shift much of the burden of preventing pest introductions from the importer and APHIS to the exporter.

Progress has been made toward some of these goals outside this rule-making. APHIS instituted a process to temporarily prohibit importation of plants deemed to pose an identifiable risk until a pest risk assessment has been completed (the NAPPRA process). APHIS has further enhanced its ability to act quickly when a pest risk is perceived by relying increasingly on “Federal Orders”.

At the same time, APHIS participated actively in efforts by international phytosanitary professionals to adopt new “standards.” These define a new approach to ensure that plants in international trade are (nearly) pest-free. Both the North American Plant Protection Organization’s regional standard (RSPM#24)  and the International Plant Protection Organization’s global standard (ISPM#36)  envision a system under which countries would no longer rely primarily on inspections at ports-of-entry. Instead, they would negotiate with the supplier or exporting country to develop programs to certify that growers’ pest management programs are effective. Both standards detailed: 1)  how the place of production might manage pest risk and ensure traceability of plants; 2) how the importing and exporting countries might collaborate to administer the program; 3) how audits (including site visits) would ensure the program’s efficacy; and 4) what actions  various parties might take in cases of noncompliance.

It was hoped that these international standards would lead to widespread adoption of “integrated pest management programs” composed of similar requirements – similar to the impact of ISPM#15 for wood packaging.  However, living plants are more complex pest vectors than the wooden boards of crates and pallets, so each country was expected to negotiate its own specific programs – something not  encouraged for wood packaging.

APHIS’ decades-long effort to amend its regulations is warranted because of the high risk of non-native insects and – especially – pathogens being introduced via international trade in living plants. U.S. examples include white pine blister rust, chestnut blight, dogwood anthracnose, and sudden oak death (all described briefly here )

dogwood anthracnose

According to Liebhold et al. 2012 (full reference at end of blog), 12% of incoming plant shipments in 2009 were infested by a quarantine pest. This is an approach rate that is 100 times greater than the 0.1% rate documented for wood packaging (Haack et al. 2014). I have discussed the living plant introductory pathway and efforts up to 2014 to get it under control in my report, Fading Forests III.

 

Shortcomings of the Final Q 37 Rule

So – how well does this final rule  meet APHIS’ objectives?

First, will it shift much of the burden of preventing new pest introductions from the importer and APHIS to the exporter, while ensuring the system’s efficacy? In my view, on behalf of CISP, it falls short.

The new rule sets up a process under which APHIS might require that some types of imported plants be produced and shipped under specified conditions intended to reduce pest risk. However, non-American entities have little incentive to protect America’s natural and agricultural resources and from invasive species. So any new process needs severe penalties for violators.

We have seen how widespread and persistent compliance failures are for wood packaging under ISPM#15. http://nivemnic.us/wood-packaging-again-11-years-after-ispm15-problems-persist/ For this reason, I (on behalf of the Conservancy) had suggested that APHIS formally adopt a specific goal of “no new introductions”. I recognized that this goal was unachievable per se, but suggested that it should stand as a challenge and be the basis for adopting stringent restrictions on plant imports. I suggested  limiting plant imports to those either a) produced under integrated pest management measures systems (verified by third-party certification) or b) plants brought into facilities operating under post-entry quarantine conditions — and following other best management practices that had been developed and supervised by independent, scientifically-based bodies.

In my current view, APHIS’ regulation falls far short of either this goal of shifting burdens or setting a truly stringent requirement. In fact, APHIS has explicitly backed away from its own original goals and procedures.

The new regulation does authorize APHIS to choose to set up import programs under which the exporting country agrees to produce plants for the U.S. market under a system of integrated pest risk management measures (IPRMM) approved by APHIS. In accordance with the international standards, the programs established under this new power will address how the place of production will manage pest risk and ensure traceability of plants; how APHIS and the exporting country will administer the program; how plant brokers will ensure plants remain pest-free while in their custody; how audits will be performed to ensure program efficacy; and what actions various parties will take in cases of noncompliance.

How efficacious this new approach will be in preventing new introductions will depend on how aggressive APHIS is in both choosing the plant taxa and places of-origin to be managed under such IPRMM programs and in negotiating the specific terms of the program with the exporting country.

It is discouraging that APHIS has ratcheted down how frequently it expects to rely on the IPRMM approach. In the explanatory material accompanying the final regulation, APHIS clarifies that did not intend that IPRMM would be used for all imports of living plants. The IPRMM framework is described as only one of several means to achieve the goal of preventing introduction of quarantine pests. APHIS will choose the “least restrictive measures” needed to prevent introduction of quarantine pests. To clarify its position, APHIS changed the introductory text to indicate that IPRMM will be applied when such measures are necessary to mitigate risk – that is, “when the pest risk associated with the importation of a type of plants for planting can only be addressed through use of integrated measures.” [Emphases added]

The final rule is also discouraging in some of its specifics.

  • Whereas the draft regulation specified steps that places of production must take to ensure traceability of the plants they produce, in the final regulation the traceability elements specified in each IPRMM agreement will depend on the nature of the quarantine pests to be managed. Again, APHIS seeks to ensure that its requirements are not unnecessarily restrictive.
  • Although the international standard had specified severe penalties when a grower or broker violated the terms of the IPRMM agreement, APHIS proposed to base the regulatory responses to program failures on existing bilateral agreements with the exporting country. Despite the Conservancy’s plea that APHIS follow ISPM#36 in adopting more specific and severe penalties, APHIS has not done so. The one bright spot is that APHIS may verify the efficacy of any remedial measures imposed by the phytosanitary agency of the exporting country to correct problems at the non-compliant place of production. [Emphasis added]
  • APHIS is relaxing the detailed requirements for state post-entry quarantine agreements – despite the Conservancy’s concern that such agreements’ provisions could be influenced by political pressure and other nonscientific factors.

 

Two Improvements

I am pleased that APHIS has retained requirements applied to plant brokers, despite one commenter’s objections. Brokers handling international shipments of plants grown under an IPRMM program must both handle the plants themselves in ways that prevent infestation during shipment and maintain the integrity of documentation certifying the origin of the plants. A weakness, in my current view, is that APHIS will allow brokers to mix consignments of plants from more than one producer operating under the IPRMM program.  APHIS does warn that if non-compliant (infested) plants are detected at import, all the producers whose plants were in the shipment would be subject to destruction, treatment, or re-export.

A major improvement under the new regulation is that APHIS will now operate under streamlined procedures when it wishes to amend the requirements for importing particular plants (whether a taxon, a “type”, or a country of origin). Until now, APHIS has been able to make such changes only through the cumbersome rulemaking process, Instead, APHIS will now issue a public notice, accept public comments, and then specify the new requirements through amendment of the “Plants for Planting Manual” [  https://www.aphis.usda.gov/import_export/plants/Manuals/ports/downloads/plants_for_planting.pdf ] APHIS estimates that such changes can be finalized four months faster under the new procedure.

 

A Final Caveat

Finally, APHIS needs to be able to measure what effect the new procedures have on preventing pest introductions.  Such measurement depends on a statistically sound monitoring scheme. APHIS has stated in some documents that the current Agriculture Quarantine Inspection Monitoring (AQIM) system doesn’t serve this purpose. APHIS needs to develop a valid monitoring program.

 

References

 

Haack RA, Britton KO, Brockerhoff  EG, Cavey JF, Garrett LJ, et al. (2014) Effectiveness of the International Phytosanitary Standard ISPM No. 15 on Reducing Wood Borer Infestation Rates in Wood Packaging Material Entering the United States. PLoS ONE 9(5): e96611. doi:10.1371/journal.pone.0096611

Liebhold, A.M., E.G. Brockerhoff, L.J. Garrett, J.L. Parke, and K.O. Britton. 2012. Live Plant Imports: the Major Pathway for Forest Insect and Pathogen Invasions of the US. www.frontiersinecology.org

 

Posted by Faith Campbell

 

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

Insects & Pathogens Introduced Via Plant Imports – Let’s Collaborate to Understand Risk

 

map showing locations in Hawaii Volcanoes National Park of ʻōhiʻa infested by rapid ʻōhiʻa death; NPS map available here

The U.S. Department of Agriculture’s adoption of a new list of plant species barred from importation pending pest risk assessment after a four-year wait (NAPPRA) [see my previous blog from June 21, here] prompts me to review what I know about pests associated with plant imports – and to appeal for collaboration among non-USDA scientists to improve our understanding of current  risks. Therefore I’m sharing some pest import and establishment data. I welcome the opportunity to work with experts to evaluate the level of risk and other matters that might be extracted from these data. Contact me to explore how we might work together.

As was pointed out by Eschen et al. 2015 (see list of sources at the end of this blog), most countries’ data on the “plants for planting” pathway are inadequate to allow an assessment of phytosanitary measures’ efficacy in preventing pest introductions. The authors stressed the need for data on:

  1. plant imports at the level of genus, including plant type and origin;
  2. pest arrival rates on each of these categories of plant imports; and
  3. pest establishments.

In the apparent absence of agencies’ efforts to close these data gaps, I propose that we work together, using available information, to improve our understanding of the current level of risk. Perhaps we can agree on which pest species are real red flags; decide which pathways most need new policy approaches; and reach conclusions about the implications of holes in the data.

  1. What Do We Know About Plant Imports?

The U.S. imports approximately 2.5 billion plants each year. The plants most likely to transport insects or pathogens that would attack North American trees and shrubs are woody plants. According to Rebecca Epanchin-Niell, during the period FY2010-FY2012, Americans imported each year more than 300 million woody plant units, belonging to about 175 genera.

Marcel Colunga-Garcia and colleagues analyzed plant import data for the period 2010-2012. They studied maritime (ship-borne) containerized plant imports, which represented 64.4 percent of the total value of all “plants for planting” imported into the U.S. in 2010, excluding imports from Mexico and Canada. The types of plants shipped in this way include rooted plants in pots; bare root plants; bulbs and tubers; root fragments, root cuttings, rootlets or rhizomes; rooted cuttings; unrooted cuttings; and budwood/graftwood.

Measuring by the plants’ import values, Colunga and colleagues determined that New York and Los Angeles metropolitan areas together import 60 percent of these plants; not all plant imports are routed through Miami – as is often assumed.

Second, these data show which states are the ultimate destination for relatively large volumes of certain types of plants. Thus, the top five states for receipt of rhododendrons and azaleas were Michigan, Oregon, California, New York, and New Jersey. Michigan received almost twice as many plants (measured by value) as New Jersey. The top three states for receipt of “fruit and nut trees and shrubs” were Florida, Louisiana, and Washington – all at nearly $1 billion or higher. California and North Carolina ranked fourth and fifth, but at values of only $200,000. It is clear from these data that contaminated plants could deliver pests virtually anywhere in the country.

Because my focus is on insects or pathogens that threaten native trees, I wish to separate those from pests that attack primarily herbaceous plants. (Of course, herbaceous plants are important components of ecosystems, as well as premier agricultural and horticultural crops! I do not mean to imply that pest threats to herbaceous plants are not important.)

About nine million of the 300 million woody plants imported to the U.S. each year belong to genera which also contain species of trees native to North America. A larger number of plants – 224 million – were in the same family as a North American native tree (Epanchin-Niell 2017). In other words, about 75% of the woody plants imported each year were in the same family as at least one species of tree native to North America.

Since plants in the same genus are more likely to transport damaging pests that would attack North American trees and shrubs, some have suggested that all such imports should be prohibited temporarily, using the NAPPRA process.

  1. What Do We Know About Pest Arrivals? (Including Detection Difficulties)

Liebhold et al. 2012, relying on 2009 data, found that about 12 percent of incoming plant shipments had symptoms of pests – a rate more than 100 times greater than that for wood packaging — a pathway that has received far more international and U.S. regulatory attention for years. This finding is similar to that of a study in New Zealand, which found that 14 percent of consignments of plants were infested – primarily with pathogens (Epanchin-Niell 2017). Worse, though, Liebhold et al. found that a high percentage of pests associated with a plant shipment is not detected by the inspectors, although APHIS has disputed this finding.

 

At my request, APHIS analysts compiled a list of imported woody plant genera on which pests were detected during fiscal years 2011-2016. Of the 360 quarantine pests listed, only 34 were designated as “disease” (nine percent of the total). I suspect this is significantly below the actual number entering the country.

 

Table 1. Overall number of pest detections recorded*

Fiscal Year # of records # of countries of origin for shipments found to be infested
2011 133 16
2012 110 14
2013 42 12
2014 27 9
2015 45 12
2016 14 5

 

* My totals do not include shipments from Puerto Rico; there were six pest detections on plants from the Commonwealth.

I cannot explain why the total number of detections shown in Table 1 nor – especially – the number of countries from which these infested shipments arrived fell so dramatically in FY2016. If APHIS was focused on inspecting the highest-risk shipments in FY15 and FY16, shouldn’t the number of interceptions have risen?

 

Pathogens are probably undercounted in Table 2 because inspectors experience great difficulty in detecting pathogens during port-of-entry inspections. For example, the genus Phytophthora does not appear in the database of port interceptions, yet we know that Phytophthora are being introduced. Also, the database does not contain the genus Rhododendron. It seems unlikely that no quarantine pests were detected on a shipment of Rhododendron over that six-year period.

 

Table 2. Types of Pests Intercepted

Disease                        34

Insect                           290

Mite                             20

Mollusk                       23

Nematode                    2

 

 

APHIS’s interception records are not designed as a statistically valid sample for determining the total number of pests on shipments because, for example, inspection priorities and resultant inspection criteria  change over time. Since 2015 APHIS has focused more on higher-risk shipments. Before, a specified percentage of all imports was inspected. For these reasons, interception records cannot be used to evaluate the overall risk of pests being imported along with “plants for planting” in any given year. Nor can APHIS’ interception records be compared over time.

Obviously, the numbers of pests detected on a specific type of import will reflect several factors, especially the volume of imports and the intensity of inspection. This bias in the data is reflected in the high number of pest interceptions from Central American countries – from which the U.S. imports very large volumes of plants. Two hundred twenty of the 385 pest detections recorded over the six-year period (57 percent) were on plants shipped from Costa Rica or Guatemala. Canada ranked third, with 35 pest detections (nine percent of the total).

That said, each record reflects a detection of a taxon of animal or pathogen that APHIS considers to be a “plant pest”. Each time a particular species is detected in a shipment, it is recorded. If more than one species is detected in a shipment, each species is reported separately. Therefore,

  • the number of detection records does not equal the number of shipments found to be infested;
  • the records do not reveal the number of specimens of each named taxon – either in an individual shipment or in total; and
  • the number of times a taxon appears in the database does indicate how many shipments were found to be infested by that taxon.

 

 

  1. Principal Threats to North America’s Native Trees and Shrubs

APHIS and I agree that our focus should be on those pests likely to have significant consequences if they are introduced. This risk of impact depends on climate, presence of probable hosts in the U.S., and other factors. Among the highest risk sources of imports for most the U.S. will be temperate countries, like those below. APHIS assigns a lower rating of risk to pests that are likely to be established in the U.S. already or to establish naturally – e.g., pests native to northern Mexico near the U.S. border.

 

Table 3. Main Temperate Countries of Origin for Infested Shipments by Year

FY2011:  Germany, Japan, Turkey, Netherlands, France, Pakistan, Canada, New Zealand

FY2012:  Israel, Canada, South Korea, China, Chile, Netherlands

FY2013:  France, Canada, Belgium, China

FY2014:  China, Canada, South Africa, Portugal

FY2015:  China, Germany, Netherlands, Canada, France, Australia

FY2016:  Canada

 

 

We can also look at the host plants on which pests are being intercepted to think about threats. Table 4 shows these. Presumably, the volume of trade in these genera, from the countries concerned, is sufficient to preclude any listing of these hosts under the NAPPRA regulatory process (see blog from June 21).

 

Table 4. Host Genera on which Pests Were Intercepted, Including only Genera Native

to North America or U.S. Islands or Important in Ornamental Plantings

 Plant genus                 # records — countries of origin — types of pests

Acer                             7 — primarily Canada; also Netherlands & Korea – 2 disease, 4 insect, 1 mite

Buxus                           3 – all Canada – 2 insect, 1 mollusk

Camellia                      2 – France – 1 disease, 1 mite

Chamaecyparis                        1 – Canada; mite

Cycas revoluta             8 – Honduras, Costa Rica, Dom. Rep. – insects

Fagus                          6 – Netherlands, Belgium; insects (aphids primarily)

Hibiscus                       4 – France, Tahiti, Canada – 1 disease, 1 insect, 1 mite, 1 mollusk

Ilex                              3 – Canada & NL – 2 insects, 1 disease

Liriodendron               2 – Canada – insects

Magnolia grandifolia  1 – South Africa – insect

Opuntia                       6 – Mexico – insects

Picea                           7 – Canada – insects (primarily aphids)

Thuja                           6 – Canada – insects

Tilia                             2 – Canada – mollusk

 

  1. What Else Do We Know?

If we look at pests introduced via all pathways, unlike those above, U.S. pest-establishment data show that plant pests continue to be introduced, but at a slower pace in recent years. In its Implementation Plan for Section 10201 of the Food, Conservation and Energy Act of 2008, USDA APHIS said that between 2001 and summer 2008, 212 pests were reported as new to the United States – an average of 30 new pest introductions each year. An APHIS database of plant pests “newly detected” during fiscal years 2009 – 2013 listed approximately 90 new taxa of plant pests as detected during this period – approximately 22 each year. In its annual report for 2016, the agency reported detecting 16 species of plant pests not previously detected in the U.S.

I think that approximately 37 of the 90 “new” pests detected over the 2009-2013 period were probably introduced via imports of plants, cuttings, or cut foliage or flowers. These include all the viruses, fungi, aphids and scales, whiteflies, and mites. I have asked APHIS to give me a database of newly detected plant pests for fiscal years 2014-2015, but the agency has not done so.

Among tree-killing pests introduced over the past 160 years, approximately 69% were introduced via the live plant trade. Liebhold et al. 2012 found that 95% of sap feeders, 89% of foliage-feeding insects, and 47% of pathogens were introduced via this pathway.

Pathogens are probably undercounted here, too, since those that do not cause massive damage are probably overlooked. Of the approximately 90 pests newly detected  2009-2013, ten were fungi, four were viruses, and two were rusts (18 percent of the total).

The genus Phytophthora does not appear in the database of “newly detected” pests. Yet we know that Phytophthora are being introduced. We know that, in 2012 a Phytophthora new to the United States — Phytophthora tentaculata — was detected on nursery-raised herbaceous plants in California. Follow-up studies have detected several additional Phytophthora taxa that might be new to the United States. One, P. quercina, had previously been reported only in Europe and Western Asia. The other putatively new taxa are still being evaluated as to whether they are previously unknown species or hybrids, and whether they are native to California or elsewhere in the United States, or are of alien origin.

 

The presence of the EU1 strain of Phytophthora ramorum in several nurseries in Washington, California, and most recently Oregon is also evidence that introductions of this species have continued since it was designated as a regulated pest in 2003.

 

Another pathogen that has apparently not been included in the official data is the fungus which causes rapid ʻōhiʻa death – a strain of Ceratocystis fimbriata. Scientists do not yet know whether this strain was introduced directly to Hawai`i on a recently-imported, asymptomatic plant; or whether the strain evolved from one or more different strains introduced to Hawaiʻi recently or longer ago.

 

Can you help evaluate the level of risk associated with various plant taxa, types, and origins? and other matters that might be extracted from these data. Perhaps we can agree on which pest species cause greatest concern; decide which pathways most need new policy approaches; and reach conclusions based on holes in the data. Can we use the data on pest taxa that underlie this summary – data which I have – to strengthen the case for USDA to promptly finalize revision of its “plants for planting”  (“Q-37”) regulations (see my blog from June 21 and Chapter 4 of the Fading Forests report?

 

Contact me to explore how we might work together.

 

Posted by Faith Campbell

 

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

SOURCES

 

Colunga-Garcia M, Haack RA, Magarey RD, Borchert DM (2013) Understanding trade pathways to target biosecurity surveillance. In: Kriticos DJ, Venette RC (Eds) Advancing risk assessment models to address climate change, economics and uncertainty. NeoBiota 18: 103–118. doi: 10.3897/neobiota.18.4019

 

Epanchin-Niel, R.S. 2017. Presentation to 28th USDA Interagency Research Forum on Invasive Species. January 2017.

 

Eschen, R., K. Britton, E. Brockerhoff, T. Burgess, V. Dalley, R.S. Epanchin-Niell, K. Gupta, G. Hardy, Y. Huang, M. Kenis, E. Kimani, H.-M. Li, S. Olsen, R. Ormrod, W. Otieno, C. Sadof, E. Tadeau, M. Theyse. 2015. International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environmental Science and Policy 51 (2015) 228-237

Liebhold, A.M., E.G. Brockerhoff, L.J. Garrett, J.L. Parke, and K.O. Britton. 2012. Live Plant Imports: the Major Pathway for Forest Insect and Pathogen Invasions of the US. www.frontiersinecology.org

 

 

Surprise! USDA Through APHIS moves on NAPPRA regulations

 

USDA headquarters; F.T. Campbell

To my complete surprise, USDA APHIS has finalized a four-year-old proposal to temporarily prohibit importation of 56 taxa of plants: 22 that are likely to be invasive and 34 that are hosts of eight insects, pathogens, or other types of plant pests.

On June 19, APHIS published a notice in the Federal Register announcing that APHIS had finally acted on a proposal initially published on May 6, 2013. To view the datasheets APHIS prepared and the comments APHIS received, go here.

Under APHIS’ regulations in ‘‘Subpart— P4P’’ (7 CFR 319.37 through 319.37–14 …), APHIS prohibits or restricts the importation of “plants for planting” – living plants, plant parts, seeds, and plant cuttings – to prevent the introduction of “quarantine pests” into the US. A “quarantine pest” is defined in § 319.37–1 as a plant pest or noxious weed that is of potential economic importance to the United States and not yet present in the country, or is present but is not widely distributed and is being officially controlled.

Section 319.37–2a authorizes APHIS to identify those plant taxa whose importation is not authorized pending pest risk analysis (NAPPRA) in order to prevent their introduction into the United States. As regards plant taxa that have been determined to be probable invasive species, such importation is restricted from all countries and regions. For taxa that have been determined to be hosts of a plant pest, the list includes (1) names of the taxa, (2) the foreign places from which the taxa’s importation is not authorized, and (3) the quarantine pests of concern.

The plant taxa now regulated because they host various types of plant pests are listed in two parts.

1) Species designated during the first round of action were proposed in 2011 and finalized in 2013 =

https://www.aphis.usda.gov/import_export/plants/plant_imports/Q37/nappra/downloads/HostsofQuarantinePests.pdf

2)  Species proposed in 2013 and finally designated on June 19, 2017 =

https://www.aphis.usda.gov/import_export/plants/plant_imports/Q37/nappra/downloads/hosts-quarantine-pests-round2.pdf

 

In summary, the second round of NAPPRA seeks to prevent introduction of the following specific pests by prohibiting imports of their associated plants from most countries. Imports from Canada are often excepted and those from the Netherlands less often.

  • Asian longhorned beetle (ALB, Anoplophora glabripennis) – Celtis, Cercidiphyllum (katsura), Koelreuteria, Tilia
  • Great spruce bark beetle (Dendroctonus micans) – Pseudotsuga
  • Japanese pine sawyer (Monochamus alternatus) – Cedrus
  • Phytophthora kernoviae 17 genera, including Camellia, Fagus, Hedera, Ilex, Leucothoe, Liriodendron, Magnolia, Pieris, Quercus, Rhododendron, Sequoia, Vaccinium
  • Boxwood blight (Puccinia buxi) – Buxus (boxwood)

 

There are other restrictions on plant imports related to pests, which predate the most recent NAPPRA listing. These include =

  • Acer is already listed on the previous NAPPRA list for all countries except Canada, Netherlands, and New Zealand.
  • Longstanding regulations prohibit the importation of Abies species from all countries except Canada. The genera Larix, Picea, and Pinus were added to the NAPPRA list in the April 2013 NAPPRA notice.
  • Camellia was also listed in 2013 from all countries, except Canada, to prevent introduction of the citrus longhorned beetle (CLB, Anoplophora chinensis); the genus is also regulated for Phytophthora ramorum. The most recent action now adds restrictions because Camellia is also a host of Phytopththora kernoviae. Plants from Canada are exempt because of longstanding “significant trade” volumes.
  • While plants in the genus Cercidiphyllum (katsura) may be imported from the Netherlands – despite the presence in the country of both ALB and CLB – a 2013 Federal Order (DA–2013–18) specifies mitigation actions which exporting countries must take to prevent transport of these insects via trade in this or other genera.
  • Hedera was added to the NAPPRA list via the first round of proposals in April 2013 as a host of CLB. Under the 2013 proposal, the genus is also listed as host of Phytophthora kernoviae.
  • Vaccinium are consistently exported only from Canada and Australia. The genus is listed because it is a host of Phytophthora kernoviae.

As APHIS notes in its explanation in the Federal Register, P. kernoviae has been reported in England, Ireland, and New Zealand; APHIS considers this to be evidence of spread of the pathogen through the global movement of plants. APHIS notes further that the pathogen has a large number of confirmed hosts and there is currently no effective control measure. APHIS does not note that the native range of P. kernoviae is unknown.

APHIS received considerable pushback on its proposal to restrict importation of Callistephus, Chrysanthemum, and Eustoma spp. to prevent introduction of several pathogens, including chrysanthemum stem necrosis virus (CSNV) and chrysanthemum white rust.  In response, APHIS has withdrawn these three genera from the new NAPPRA listing while it conducts a commodity import evaluation document (CIED) for Chrysanthemum.

 

I have not discussed here NAPPRA as it applies to invasive plants. In April I blogged about the need for APHIS to act. Plants listed because of their invasive potential are posted here =

1) 2013 listing: https://www.aphis.usda.gov/import_export/plants/plant_imports/Q37/nappra/downloads/QuarantinePestPlants.pdf

2) 2017 listing: https://www.aphis.usda.gov/import_export/plants/plant_imports/Q37/nappra/downloads/quarantine-pest-plants-round2.pdf

Again, I welcome USDA’s finalization of this second round of regulations and look forward to new proposals.

 

History of NAPPRA

In December 2004 APHIS published in the Federal Register an Advance Notice of Proposed Rulemaking, or ANPR which outlined a strategy for reducing pest introductions via the “plants for planting” pathway. The strategy had two major steps.

First, the agency would create a temporary holding category for plants suspected of transporting insects or diseases. This would allow APHIS to suspend imports of particular plants, from certain countries, until a full risk assessment was completed.

Second, APHIS would issue regulations establishing a general framework to minimize the presence of pests. Using this, the agency would negotiate country-specific requirements for imported plants, working toward an approach that would rely on “integrated measures” (also called “integrated pest management”).

APHIS formally proposed to create the temporary holding category – the NAPPRA program – in 2009. The regulations were finalized in May 2011 – six and one half years after the intention to take this action was announced in the ANPR. In adopting the NAPPRA rule, APHIS reiterated the need to encourage, but not require, the plant import trade either to rely on low-risk plant materials or to adopt pest-reduction methods.

In July 2011, APHIS published the initial list of species proposed for inclusion in the NAPPRA category.  This list was finalized in April 2013. A second list of species proposed for NAPPRA listing was published in May 2013.

This history – with citations – can be found in chapter 4, “Invasion Pathways”, in my report Fading Forests III, available here.

 

Meanwhile, here are a few related FAQs about NAPPRA as it is being implemented.

 

Why does APHIS regulate by genus?

APHIS regulates pests’ hosts at the genus level because when a new species is identified as a host, additional scientific studies often identify other host species within that genus. Therefore, regulating all species within the genus is the preferred course of action until a formal Pest Risk Analysis (PRA) is conducted. Uncertainties are worked out then.

 

How do these new rules fit into international standards?

APHIS notes in the Federal Register notice that  the “plants for planting” pathway is recognized as posing a high risk  for the introduction of pests. For this reason, the International Plant Protection Convention recommends that countries require a pest risk analysis before allowing importation of a plant taxon from a new country or region.

 

How long is importation of plants prohibited?

NAPPRA listing does not prohibit the importation of taxa indefinitely. Imports are held up until a pest risk analysis can be conducted to identify appropriate mitigation measures. Furthermore, an importer may apply for a controlled import permit to import small quantities of a prohibited or restricted taxon for developmental purposes.

 

What is the meaning of “significant trade”?

 

If a taxon that is a host of a quarantine pest has been imported in ‘‘significant’’ quantities from a specific exporting country, it is not eligible for the NAPPRA prohibition. Currently APHIS defines “significant trade” as the importation of 10 or more plants of a taxon in each of the previous three fiscal years. At the urging of one commenter, APHIS is considering whether to alter that definition by looking at import volumes over three out of five years – although the agency said if it took that action, it would most likely also consider raising the base number of plants from 10 to a higher level.

 

In the case of “significant trade” in a taxon that is a host of a quarantine pest, APHIS specifies other measures to address the pest risk.

 

What other protections does APHIS use?


A “Federal order” is used to rapidly take action to prevent the introduction of a quarantine pest, and is generally followed by notice and an opportunity for public comment. This is a separate action from the NAPPRA process.

 

OTHER PENDING USDA RULES

 

The Overhaul of Regulations for “Plants for Planting (P4P) (the “Quarantine-37” or “Q-37” regulations) – Will It Also Be Finalized?

 

Another important APHIS action aimed at improving control over introductions of pests on imported plants has also been unresolved for four years. This is the revision to the agency’s overall plant import regulations, which was also proposed in May 2013. The revision would restructure the current regulations by moving specific restrictions on the importation of taxa from regulations to the Plants for Planting Manual. That transfer would allow specific restrictions to be changed without going through the full public notice and comment process required for amending formal federal regulations. The proposed revision would also add a framework for requiring foreign plant suppliers to implement integrated pest management measures to reduce pest risk. Experts believe that depending on integrated measures will better prevent pest introductions than the current reliance on a visual inspection at the time plants are shipped.

 

Again, for a history of and rationale for the proposed regulatory change, read chapter 4, “Invasion Pathways”, in my report Fading Forests III, available here.

 

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

 

Experts describe forest pests’ impact, call for action

 

Sixteen scientists and policy analysts (including me) have published a new study reviewing recent work on numbers, pathways and impacts of non-native, tree-killing insects and pathogens. I encourage you to read the article. It provides a concise and compelling overview of the threat to our wildland, rural, and urban forests from non-native insects and diseases and proposes some thought-provoking solutions.

SOD Parke diseased plant

rhododendron infected by sudden oak death; photo by Jennifer Parke, Oregon State University

Meanwhile, here are our conclusions:

Current policies for preventing introductions have reduced the numbers of pests introduced via the various pathways (e.g., wood packaging and horticultural plants – but not sufficiently to counter pests’ rising opportunities for introduction resulting from burgeoning global trade. [Emphasis mine.]

 

At the current efficacy of implementing the international regulations governing wood packaging [ISPM #15] ( Haack et al., 2014),  and given growing trade, Leung et al. 2014 project that by 2050 – just 35 years from now – up to three times as many wood-boring insects may be introduced to the U.S. as are currently here.

 

(I discussed this high risk in blogs posted at this site on July 15 and August 22, 2015.)

 

The new paper presents several options for improving prevention. These include: measures to ensure exporters ship “clean” plants and wood packaging; post-entry quarantines to raise the likelihood that pests will be detected; placing all genera of North American woody plants on USDA’s NAPPRA list of genera not currently approved for import and awaiting risk assessment; and improved surveillance and eradication programs. We also note the importance of improving data collection and allowing  researchers outside USDA access to those data to support independent evaluation of policy’s effectiveness.

 

As Aukema et al. demonstrated six years ago, non-native forest insects have accumulated in U.S. forests at a steady rate of about 2.5 per year over the last 150 yrs. While the rate of introduction has not changed, the types of insects introduced have. In the 20th Century, plant-associated insects dominated the introductions. In recent years wood-boring insects associated with wood packaging materials have dominated. Some of these wood-borers also are highly damaging! (See emerald ash borer, redbay ambrosia beetle/laurel wilt, and polyphagous shot hole borer/Fusarium here). Lack of information precludes a similar analysis for pathogens; although we all know that the 20 or so high-profile pathogens cause great devastation – see descriptions here.

 

The whole country is at risk; although the highest numbers of tree-killing insects and pathogens are established in the Northeast and Midwest, Pacific Coast states are catching up (and certainly already have their share of devastating insects and pathogens).  See the map below.  You can check the pests in your state by visiting the interactive map here .

map

map developed by USFS; published in Aukema et. al 2010.

Our new article notes that these non-native pests are the only disturbance agent that has effectively eliminated entire tree species or genera from U.S. forests in the span of decades. Follow-on effects include alterations of ecosystem functions and huge costs to various stakeholders, especially residents and governments of (sub)urban areas.

 

These impacts can persist for centuries as a result of altered species composition, which affects multiple trophic levels.

 

We followed Aukema et al. 2011’s results in estimating the direct annual economic impact of non-native forest insects to be at least:  $2 billion in municipal government expenditures, $1.5 billion in lost residential property values, and $1 billion in homeowner expenditures for tree removal and replacement or treatment. These costs and losses contrast with the paltry $216 million estimated in federal government expenditures.

 

Aukema et al. 2011 noted that these expenses cannot be summed across cost categories because of the potential for double-counting. We note that these figures are probably underestimates for several reasons. They did not include the introduced diseases such as sudden oak death. Nor do they  include pests detected recently, such as the polyphagous shot hole borer.  Finally, our paper excluded consideration of insects or pathogens native to some part of North America, such as the goldspotted oak borer. (For more information about these organisms, consult the write-ups here.)

 

As our article notes, the billions of dollars in annual economic damages (and un-quantified ecological impacts) are economic externalities. That is, the importers who benefit from the economic activity do not pay directly for preventing or responding to the associated pest introductions.

 

The article discusses several policy options that we believe would greatly reduce unacceptable risks. These options include several bold actions:

 

  • Require importers to switch from packaging made from wooden boards to packaging made from materials other than solid wood (fiberboards ok). This change is both highly protective and potentially cost-effective. Such a switch would have to be justified under the terms of international trade agreements – but given the high levels of damage caused by wood-boring pests, I don’t think that hurdle is insurmountable.
  • Greatly strengthen measures aimed at preventing pest introduction on imports of plants. One step would be restricting imports of all genera of “woody” plants native to North America by designating them as “not authorized for importation pending pest risk assessment” (NAPPRA). Another protective step would be to promptly finalize the Q-37 revision proposed by USDA in April 2013 and immediately initiate negotiations with principal foreign suppliers of temperate climate woody vegetation to implement the pest-minimization procedures contained in that revised regulation, as well as in ISPM#36.

 

Other options discussed are straight-forward and simpler:

 

  • Tighten enforcement of existing regulations by ending the practice of allowing an importer to be detected five times in a year with wood packaging that does not comply with regulatory requirements before imposing a penalty. When a new year starts, that importer gets a “clean slate”! Is this how agencies enforce regulations that they are serious about?
  • Expand efforts to assist trade partners in adopting clean trade measures.
  • Expand and integrate surveillance programs for new pest outbreaks, and providing timely and adequate funding for emergency eradication efforts.

 

SOURCES

 

Aukema, J.E., B. Leung, K. Kovacs, C. Chivers, K. O. Britton, J. Englin, S.J. Frankel, R. G. Haight, T. P. Holmes, A. Liebhold, D.G. McCullough, B. Von Holle.. 2011. Economic Impacts of Non-Native Forest Insects in the Continental United States PLoS One September 2011 (Volume 6 Issue 9)

Aukema, J.E., D.G. McCullough, B. Von Holle, A.M. Liebhold, K. Britton, & S.J. Frankel. 2010. Historical Accumulation of Nonindigenous Forest Pests in the Continental United States. Bioscience. December 2010 / Vol. 60 No. 11

 

Haack, R. A., K. O. Britton, E. G. Brockerhoff, J. F. Cavey, L. J. Garrett, M. Kimberley, F. Lowenstein, A. Nuding, L. J. Olson, J. Turner, and K. N. Vasilaky. 2014. Effectiveness of the international phytosanitary standard ISPM no. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. Plos One 9:e96611.

 

Leung, B., M. R. Springborn, J. A. Turner, and E. G. Brockerhoff. 2014. Pathway-level risk analysis: the net present value of an invasive species policy in the US. Frontiers in Ecology and the Environment 12:273-279.

 

 

Posted by Faith Campbell

Invasive plants – huge numbers, continuing introductions & spread …

The U.S. is badly invaded by non-native plants. In the database he maintains,
Rod Randall of Western Australia reports that more than 9,700 non-native plant species are naturalized in the U.S. In this compendium, Randall defines “naturalized” species as those having self-sustaining and spreading populations with no human assistance. Not all of these species impact upon the environment.

RRandall W H

As noted, not all 9,700 species are “invasive”. It is likely that a significant proportion of the invaders are “weak” invaders which coexist with the native plants and make up minor components of the plant community. Others are “strong” invaders that can rapidly attain community dominance and dramatically impact native species and ecological processes (Ortega and Pearson 2005).

But the evidence is that the situation will grow worse. A study of a small proportion of the naturalized plants (1201 alien species; 755 invasive; Bradley, Early & Sorte 2015) found that
– Invasive and alien plants are more widely distributed than natives across the continental United States
– The average invasive plant now inhabits only ~ 50% of its expected range
– Biological factors are less important than human actions in facilitating spread

According to Dr. George Beck of Colorado State University, by 2015, the acreage of land managed by the BLM that is invaded by non-native plants exceeds 77 million acres – more than twice the areas reported in 2009 (35 million acres) (see Dr. Beck’s testimony here). I noted in my blog about threats to U.S. National parks that are World Heritage sites (October 21, 2015), National parks from Hawai`i to Florida have been badly damaged by invasive plants.

Another source reports that more than 500 plant species invasive in some region are being sold on-line globally (Humair et al. 2015).

USDA APHIS has adopted a pre-import risk-screening system. Based on these analyses, utilizing the NAPPRA process, in April 2013 APHIS determined that 41 plant species may not be imported until a risk assessment has been conducted because of the risk they pose of being invasive. APHIS proposed a second group of species, containing 22 species, in May 2013. However, this list has not been finalized two and a half years later – despite meeting with conservation organizations/stakeholders in April 2015 at which we discussed ways to speed up the approval process. (We were told that the delay is caused by controversy over taxa proposed for NAPPRA-listing because their link to plant pests; that there is no controversy over the taxa to be restricted as potentially invasive plants.)

Vilsack

Clearly the threat from invasive plants is great and growing. The U.S. Department of Agriculture needs to adopt procedures that enable APHIS to act more quickly to curtail introduction and human-assisted spread of invasive plants. APHIS and federal land-managing agencies need adequate resources to develop and apply effective and environmentally sound control measures.

Sources
Bradley, B.A., R. Early & C. J. B. Sorte. 2015. Space to invade? Comparative range infilling and potential range of invasive and native plants. Global Ecology and Biogeography

Humair, F., Humair, L., Kuhn, F. and Kueffer, C. (2015), E-commerce trade in invasive plants. Conservation Biology, 29: 1658–1665. doi: 10.1111/cobi.12579
Ortega, Y. K. and D. E. Pearson. 2005. Strong versus weak invaders of natural plant communities: assessing invasibility and impact. Ecol. Appl. 15:651–661

 

posted by Faith Campbell