Breeding Tree Resistance: New Science and Call to Action on New Legislation

grafted beech at Holden Arboretum – for resistance breeding tests

Two USFS experts have published a chapter describing the components needed to succeessfully breed trees resistant to threatening pests. [See full citation at end of blog.]

As Sniezko and Nelson note, the threat from non-native pests and pathogens to forest health and associated economic and ecological benefits is widespread and increasing. Further, once such a pest becomes well-established – as some 400 pest species now are — few strategies to save affected species exist except a program to enhance the species’ pest resistance.

From a technical point of view, Sneizko and Nelson find reason for hope. Most tree species have some genetic variation on which scientists can build. It is likely that a well-designed and well-focused breeding program can identify parent trees with some pest resistance; select the most promising; and breed progeny from those parents with sufficient resistance to restore a species.

Furthermore, they say, progress can be made fairly quickly. Scientists can focus on developing genetically resistant populations while postponing studies aimed at understanding details of the mechanisms and inheritance of the obtained resistance.

Fifty years of breeding have revealed the techniques and strategies that work best. As a result, application of classical tree improvement procedures can lead to development of pest-resistant populations within a decade or so in some cases, several decades in others. The time needed depends on the specifics of the pest-host relationship, level of resistance required – and resources available.

In addition, advances in biotechnology can accelerate development of resistance. Tools include improved clonal propagation, marker-assisted selection, and genetic engineering to add resistance gene(s) not present in the tree species.

Port-Orford cedars in controlled breeding stage at Dorena; photo by Richard Sniezko, USFS

Sniezko and Nelson identify basic facilities needed to support successful breeding programs:

(a) growing space (e.g., greenhouses);

(b) seed handling and cold storage capacity;

(c) inoculation infrastructure;             

(d) field sites for testing;

(e) database capability for collecting, maintaining, and analyzing data;

(f) areas for seed orchard development;

(g) skilled personnel (tree breeders, data managers, technicians, administrative support personnel, and access to expertise in pathology and entomology).

Absolutely essential is continuity of higher-ups’ and public’s support.

Sniezko and Nelson note that a resistance breeding program differs from other research projects in its objectives, magnitude and focus. It is an action-oriented effort that is solution-minded—countering the impact of a major disturbance caused by a pest (in our case, a non-native pest).  

See the article for more detailed descriptions of each step in the process.

There are two basic stages:

Phase 1:exploration to assess whether sufficient genetic variation in resistance exists in the species. This involves locating candidate resistant trees, preferably across the affected geographic range impacted by the pest; developing and applying short-term assay(s) to screen hundreds or thousands of candidate trees; and determine the levels of resistance present. In addition to those objectives Phase 1 also begins to evaluate the durability and stability of resistance. It is vital to inform stakeholders of progress and engage them in deciding whether and how to proceed.

Phase 2: develop resistant planting stock for use in restoration. This stage relies on tree improvement practices developed over a century, and applies the knowledge gained in Phase 1. Steps include scaling up the screening protocol; selecting the resistant candidates or progeny to be used; establishing seed orchards or other methods to deliver large numbers of resistant stock for planting; and additional field trials to further validate and delineate resistance.

The authors argue that, at present U.S. forestry programs lack a coordinated, focused resistance breeding program based on the components described above. The Dorena Genetic Resource Center (DGRC) – established in 1966 in Oregon and supported primarily by the USDA Forest Service’s regional State and Private Forestry program and National Forest System — fits the bill. The DGRC has sufficient facilities and resources to screen simultaneously tens of thousands of seedlings from thousands of parent trees belonging to several species. Its staff have built up invaluable experience.

However, the Center is regional in scope and focus. (Staff are pleased to offer advice to colleagues working in other parts of the country.) Who will ensure that we make progress on restoring the dozens of tree species in the East under threat from invasive pests? The ashes, hemlocks, elms, beeches, oaks, Fraser fir, dogwoods, redbay and swamp bays, sassafras all need help (Profiles of these trees’ pest challenges can be found at here. [Chestnut and possibly the chinkapins have the benefit of a well-established charity …]

ash killed by EAB; photo by Nate Siegert, USFS

Three case studies illustrate how the process has worked for three groups of species: 1) five-needle pines (subgenus Strobus);  2) Port-Orford cedar (Chamecyparis lawsonii); 3) resistance to fusiform rust (Cronartium quercuum f. sp. fusiforme – a native pathogen) in southern pines.

New Possibilities

Resistance breeding programs are simplest to undertake when tree improvement facilities and experienced staff are already in place. It is most unfortunate that their number has declined significantly. However, a Congressional mandate to pursue resistance breeding as a strategy can partially retrieve and add needed resources.

Some members of Congress have taken steps to partially restore resistance breeding programs.  H.R. 1389, cosponsored by Reps. Welch (D-VT), Kuster and Pappas (both D-NH), Stefanik (R-NY), Fitzpatrick (R-PA), Thompson, (D-CA), Ross (D-NC) Pingree (D-ME). Then-Rep. Antonio Delgado also co-sponsored, before resigning to become Lieutenant Governor of New York.

The bill would establish separate grant programs to fund work under the two phases outlined by Sniezko and Nelson. It relies on grants rather than setting up Dorena-like facilities in other parts of the country. Scientists are already setting up consortia to provide the needed facilities and long-term stability e.g., Great Lakes Basin Forest Health Collaborative. Will that be enough?

The most likely way to create a national tree resistance program is to incorporate these ideas into the next Farm Bill – due to be adopted next year (2023).

You can help by contacting members of the House and Senate Agriculture committees and urging them to include in the bill either H.R. 1389 or a more comprehensive program that does establish centers analogous to Dorena.

Also convey your support to USDA leadership – especially the Forest Service and Agriculture Research Service. (APHIS should be part of the team, but its focus is on strategies with more immediate effect.)

As Sniezko and Nelson state, a key component for success is a core group of stakeholders who

  1. realize the problem (threat to a tree species’ role in the environment);
  2. acknowledge that resistance breeding offers the best avenue for maintaining the species of concern; and
  3. express a willingness to invest in a solution that could take one or more decades.

Will YOU be part of this team?

I note that Bonello et al., 2020 (citation below) suggested a new structure to provide the needed focus and coordination. Adoption of H.R. 1389 would partially realize this. The bill calls for a study to examine the benefits of establishing a more secure foundation within USDA for addressing tree-killing pests.

Scott Schlarbaum made similar points in Chapter 6 of Fading Forests III, published in 2014. See links below.

SOURCES

Bonello, P., F.T. Campbell, D. Cipollini, A.O. Conrad, C. Farinas, K.J.K. Gandhi, F.P. Hain, D. Parry, D.N. Showalter, C. Villari, K.F. Wallin. 2020. Invasive tree Pests Devastate Ecosystems – A Proposed New Response Framework. Frontiers in Forests and Global Change. January 2020. Volume 3. https://www.frontiersin.org/articles/10.3389/ffgc.2020.00002/full

Sniezko, R.A. and C.D. Nelson.  2022. Chapter 10, Resistance breeding against tree pathogens. In Asiegbu and Kovalchuk, editors. Forest Microbiology Volume 2: Forest Tree Health; 1st Edition. Elsevier

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Updates on 1) hemlocks 2) shot hole borers/Fusarium & 3) beech leaf disease

symptoms of beech leaf disease; photo by Dr. Chagas de Freitas

Three webinars during April and May provided updates on efforts to address three non-native, tree-killing pests: hemlock woolly adelgid (HWA), link invasive shot hole borers (ISHB), link and beech leaf disease (BLD) link. I attended each and summarize here.  

  1. Hemlock conservation in North Carolina  – the NC Hemlock Restoration Initiative (HRI) see SaveHemlocksNC.org  

The webinar was recorded at Hope for the Hemlocks: HWA Management Approaches on Public and Private Lands in North Carolina.  You probably need to be a member of the Natural Areas Association to watch the archived version.

I was pleased to learn about the major effort under way in North Carolina, where eastern and Carolina hemlocks are extremely important components of multiple ecosystems. In 2013, the Commissioner of Agriculture decided to make protecting hemlocks a signature project. He wanted to ensure that three state agencies – the Forest Service, Wildlife Department, and State Parks – worked together to improve the efficacy of treating trees. (Treatments available at the time were expensive and time-consuming.)

HRI treatment at Conestee Falls; HRI photo

Thom Green described the result: North Carolina’s Hemlock Restoration Initiative (HRI). The initiative is administered by the Western North Carolina Communities – a non-governmental organization with strong connections to rural communities and a history of successful collaborative projects that support agriculture and forestry. It engages state agencies, local and county governments, local NGOs, and federal agencies and works on both public and private lands with the goal of ensuring that hemlocks can survive to maturity.

HRI staff work with local partners to identify priority hemlock conservation areas (HCAs). It then sends a “strike team” to guide the partners in treating as many trees as possible. (North Carolina allows non-licensed volunteers to apply pesticides under supervision; also, landowners can treat trees on their own property.) These collaborative projects can treat up to 1,000 trees per day.

The chemicals used are imidacloprid and, where poor tree health justifies emergency treatment, dinotefuran. These are usually applied as a soil drench because it is easier for people to transport the equipment into the woods. Bark spray is used in sensitive areas. They have found that imidacloprid provides five to seven years of protection. A new product, CoreTech, is even easier to transport and works much faster than imidacloprid, however, it costs more.

The HRI believes it is minimizing non-target impacts of the neonictenoid imidacloprid because:

  • hemlocks are pollinated by wind, not insects
    • hemlocks don’t exude resins that attract insects
    • pesticide applications are tightly targetted at the base of trunk, with 10-foot setbacks from water
    • long intervals between treatments (5 – 7 years) allow soil invertebrates to recover

The program has treated 100,000 trees between 2016 and 2021 on state and private lands. Now they are starting the second round of treatments for trees treated at the beginning of the program.

Treatment priorities are based primarily on the extent to which the trees are able to take up the chemical, evaluated by the percentage of the crown that is alive and the density of foliage. Since imidacloprid can take a year to reach the canopy of a mature tree, it is used only on trees with greater than half the crown rated as healthy. When trees have a lower status, dinotefuran is added (because it can reach the canopy within weeks).  Trees with less than 30% live crown are not treated.

The Initiative also supports biocontrol programs. It has assisted releases of Laricobius nigrinis (a beetle in the family Derodontidae) and helps volunteers monitor releases and survival. Dr. Green reports that L. nigrinis has spread almost throughout western North Carolina but that questions remain regarding its impact on tree health. He thinks biocontrol is not yet reliable as stand-alone tool; success will require a suite of predatory insects.

Forest Restoration Alliance potting hemlock seedlings; HRI photo

The HRI measures the success of various treatments (Hurray!). “Impact plots” are established at the start of treatment. Staff or volunteers return every three years to monitor all aspects of the health of a few designated trees – including untreated ones. So far, they have seen encouraging responses in crown density and new growth.

  • Invasive Shot Hole Borers (ISHB) in California

See www.ishb.org and video recordings of the meeting at:  

https://youtu.be/RyqJYyLkshk (Day 1); and https://youtu.be/kWmtcbjTczw (Day 2)

A host of scientists from California spent two full days describing research and management projects funded by specific state legislation – Assembly Bill (AB)-2470 on two invasive shot hole borers.

Adoption of this legislation resulted largely from lobbying by John Kabashima. Additional funding was provided by CalFire (the state’s forestry agency). The agency responsible for managing invasive species – California Department of Food and Agriculture (CDFA) had designated these organisms as not a threat to agriculture. So it did not fund many necessary activities.

The Problem and Where It Is

“Fusarium dieback” is the disease caused by this insect-pathogen complex. The insects involved are two ambrosia beetles in the Euwallacea genus – the polyphagous (E. whitfordiodendrus) and Kuroshio (E. Kuroshio) shot hole borers. link to DMFAccording to Dr. Bea Nabua-Behermann, Urban Forestry and Natural Resources Advisor with University of California Cooperative Extension (UCCE), other fungi are present on both beetle species but its matching Fusarium sp. is the principal associated fungus and is required for the beetle’s reproduction. These are Fusarium euwallaceae and F. kuroshium.

As of spring 2022, the beetle/fungus complex has spread as far north as Santa Barbara /Santa Clarita; and inland to San Bernardino and Riverside (see the map here). They are very widespread in Orange and San Diego counties. At least 65 tree species in southern California are reproductive hosts (globally, it is 77 species; see full list here). The preferred and most succeptible hosts are several species in the Acer, Parkinsonia, Platanus, Quercus, and Salix genera. Box elder (A. negundo) is so susceptible that it is considered a sentinel tree.

Because the beetles spend most of their life inside trees, their life cycle leaves few opportunities to combat them. Females (only) fly but tend to bore galleries on their natal tree. Several speakers on the webinar said management should focus on heavily infested “amplifier trees”. Much spread is human assisted since the beetles can survive in dead wood for months if it is damp enough for the fungus.  Possible vectors are green waste, firewood, and even large wood chips or mulch.

Management – from Trapping to Rapid Response to Restoration

Akiv Eskalen of University of California Davis discussed trapping and monitoring techniques to confirm presence of the insect and pathogen. Also, he talked about setting priorities for treating trees based on the presence of reproductive hosts, host value, infestation level, and whether the trees pose a safety hazard. The disease causes too little damage to some hosts to warrant management. He emphasized the importance of preventing spread. This requires close monitoring of infested trees to see whether beetles move to neighbors. Dr. Eskalen described a major and intensive monitoring and treatment program at Disneyland. The 600 acres of parks, hotels, and parking lots have ~16,000 trees belonging to 681 species.

Several speakers described on-going efforts in Orange County. Danny Hirchag (IPM manager for Orange County Parks) described how his agency is managing 60,000 acres of variable woodlands containing 42,000 trees, of which 55% are hosts of ISHB and their associated fungi. Of greatest concern are California sycamore and coast live oak in areas of heavy public use. The highest priority is protecting public safety; next is protecting historic trees (which can’t be replaced); third is minimizing impacts to ecosystem services. Orange County Parks is currently removing fewer than 50 trees each year. Hirchag noted the importance of collaborating in the research trials conducted by the University of California Cooperative Extension.

infested California sycamore; photo by Bea Nabua-Behermann

Maximiliano Regis and Rachel Burnap, of County of Los Angeles Department of Agricultural Commissioner/Weights and Measures, described Los Angeles County’s efforts more broadly. The challenge is clear: LA County has more than 160 parks. In 2021, they placed nearly 2,500 traps, mapped infected trees, carried out on-ground surveys to find amplifier trees, removed both amplifier and hazard trees (using funds provided by CalFire), and educated the public. Their efforts were guided by an early detection-rapid response (ED/RR) Plan (2019) developed by Rosi Dagit (see below). While London plane trees (Platanus hispanica) and California sycamores (Platanus racemose) were initially most affected, now black locusts (Robinia pseudoacacia) and box elders (Acer negundo) are succumbing. [Note: both are widespread across North America.] The researchers are trying to determine why some areas are largely untouched, despite the presence of the same tree species. Regis and Burnap noted the increasing difficulty getting confirmation of the pathogen’s presence because laboratories are overwhelmed. They continue looking for funding sources.

Rosi Dagit, Senior Conservation Biologist, Resource Conservation District of the Santa Monica Mountains, described the creation of that ED/RR system for Los Angeles County as a whole, without regard for property lines. Participants established random study plots across the entire Santa Monica Mountains Natural Recreation Area (NRA), based on proximity to areas of particularly sensitive ecological concerns. The fact that the NRA’s forests are aging and that the risk of infestations is especially high in riparian forests helped persuade policy-makers to fund the effort. The accompanying rapid response plan informs everyone about what to do, who should do it, and who pays. This information incorporates agencies’ rules about what and where to plant. It also provides measures to evaluate whether the action was effective. It did take more than two years for the county to set staffing needs etc.

John Kabashima link discussed his criteria for replanting and ecosystem restoration following tree removal in the southern California region. He recommends prompt removal of amplifier trees – especially box elder and California sycamore. He relies on replanting guidance developed by UC-Irvine (which is on the website) – especially avoiding monocultures. Kabashima reiterated the importance of close monitoring to track beetle populations and responding quickly if they build up.

Economics of Urban Forests and Cities Most at Risk

Karen Jetter (an economist at the UC Agriculture Issues Center) has developed a model to compare the costs of an early detection program to the environmental and monetary costs of infestation by Fusarium disease.  She noted that early detection and monitoring programs are often hard to justify because — when they are successful — nothing changes! She found that averted or delayed costs (including tree removals, lost ecosystem services, lost landscape asset value [replanting value] and the cost to replant) always far exceeded the cost of monitoring programs. Unfortunately, a written report about this effort (Jetter, K., A. Hollander, B.E. Nobua-Behrmann, N. Love, S. Lynch, E. Teach, N. Van Dorne, J. Kabashima, and J. Thorne. 2022. Bioeconomic Modeling of Invasive Species Management in Urban Forests; Final Report)   appears to be available only through the University of California “collaborative tools” website dedicated to practitioners and stakeholders engaged on ISHB issues. If you are not a member of the list, contact me using the comment button and ask that I send it to you. Include your email address (the comment process makes determining emails difficult if not impossible.)

Shannon Lynch (UC Davis) developed a model to estimate vulnerability of urban areas based on phylogenetic structure (relationship between tree species), host abundance, and number of beetle generations/year (linked to temperature). She found that areas with less favorable host communities can become vulnerable if the climate becomes favorable. Where the host community is already favorable, climate not important.

She evaluated 170 California cities based on their tree inventories. The cities at highest risk were San Diego, Los Angeles, the San Francisco Bay area, and the Central Valley – e.g., Sacramento. For areas lacking tree inventories, she based her risk determination on the estimated number of generations of beetles per year – based on climate. This analysis posited a very high risk in the eastern half of southern California and the Central Valley. Participants all recognized the need to apply this model to cities in Arizona and Nevada.

Possible Management Strategies

Shannon Lynch (UC Davis) studied whether endophytes might be used to kill the Fusarium fungi. She reported finding 771 fungal strains and 657 bacterial strains in tree microbiomes. Some of the fungal isolates impeded growth of the Fusarium fungi in a petri dish. She began testing whether these fungi can be used to inoculate cuttings that are to be used for restoration. She also planned to test more endophytes, and more native plant species to explore creation of a multi-fungus cocktail.

Richard Stouthamer of UC Riverside is exploring possible biocontrol agents. Of three he has evaluated, the most promising is Phasmastichus sp., which is new to science. He is still trying to establish laboratory cultures so he can test its host specificity.

See bldresearch@lists.osu.edu

symptoms of beech leaf disease; photo by Dr. Chagas de Freitas

At this meeting, scientists described research aimed at improving basic understanding of beech leaf disease’s causal agents, its mechanisms of spread, etc.  Their findings are mostly preliminary.

These findings are of greatest importance now:

  • presence of the nematodes varies considerably across leaf surface – if one collects samples from the wrong site on leaf, one won’t detect nematode (Paulo Vieria, Agriculture Research Service)
    • developing predictive risk maps that combines temperature, humidity, elevation, soils (Ersan Selvi, Ohio State). So far, he has found that BLD is greater in humid areas – including under closed forest canopies. The USFS is funding studies aimed at incorporating disease severity in detection apps.
    • determining extent of nematode presence. Sharon Reed of Ontario has found nematode DNA in trap fluids throughout the Province. It is much more common at known disease sites. Reed is also studying the presence of arthropods on beech leaves and buds.

Longer term findings and questions

  • possible vectors:
    • nematode DNA has been detected from birds – although it is not clear whether the DNA came from bird  feces, feathers, or dust (DK Martin)
    • a few live nematodes have been extracted from the excrement of caterpillars that fed on infected leaves (Mihail Kantor, ARS)
    • nematode damage to leaves:
      • presence of the nematode in leaf buds before they open (Vieria and Joe Mowery, both ARS). The nematode can create considerable damage in leaf buds before they open. Nematodes are present as early as October of the preceding year.
      • damage to leaves by nematode (Mowery, ARS) Leaf epidermal cells are distorted, stomata blocked, chlorobasts are larger than normal, irregular shape
    • possible management tools
      • are there parasites that might attack the nematode? (Paulo Vieria, ARS)
      • experimental treatment of infested trees using phosphite (Kandor, ARS)
    • ecology: how do root microbiomes compare on infested and healthy trees? (Caleb Kime, Ohio State; and David Burke, Vice President for Science at Holden Arboretum)
infested European beech in Rhode Island; photo by Dr. Nathanial A. Mitkowski

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Help Ensure Best Pest-Countering Programs Possible!

This blog asks YOU!!! to support funding for key USDA programs. Each is essential for protecting the resilience of the Nation’s forests in the face of invasive pests. Please help by contacting your members of the House and Senate Appropriations Committees. I provide a list of members – by state – at the end of this blog.

While the two key federal programs overlap, they are separately managed: USDA’s Animal and Plant Health Inspection Service (APHIS) and USDA’s Forest Service (USFS). These two agencies are funded by different subcommittees of the House and Senate’s Appropriations committees. APHIS is funded by the Subcommittees on Agriculture and Related Agencies. USFS is funded by the Subcommittees on Interior.

Your letter or email need be no more than a couple paragraphs. To make the case for greater funding, feel free to pick-and-choose from the information that follows. Your greatest impact comes from speaking specifically about what you know and where you live.

These are the specific dollar things we’d like you to ask for. The rationale for each is below.

Appropriations for APHIS programs (in $millions)

ProgramFY 2021FY 2022  CRFY 2023 Pres’ requestPlease ask
Tree & Wood Pest$60.456$61.217$63 $70
Specialty Crops$196.553$209.553$219 $219
Pest Detection$27.733$28.218$29 $30
Methods Development$20.844$21.217$22 $23

Appropriations for USFS programs (in $millions)

ProgramFY 2021FY 2022  CRFY 2023 Pres’ requestPlease ask
Forest Health Protection Coop Lands$30.747 $30.747 $36,747$51
FHP Federal Lands $15.485 $15.485 $22.485 $32
Research & Development$258.760 $258.760 $317.773 $317.733
    % for forest invaders~1%??0$16 M

Background on the Threat

I’m sure you are familiar with the many ecosystem services provided by America’s forests and woodlands – wildland, rural, and urban. (Besides – maybe you just love trees!) I assume you also know that these forests are under threat from a growing number of non-native insects and pathogens.

For a quick review, see earlier blogs re: 1) an estimate that 41% of forest biomass in the “lower 48” states is at risk to mortality caused by the most damaging 15 species; black ash swamps of the upper Midwest; unique forest ecosystems of Hawai`i; riparian forests in the far West; stream canyons of the Appalachian range and; high-elevation forests of the West; and unique forests of Southwest Oregon.  Also, see the thorough discussion of these pests’ impacts in Invasive Species in Forests and Grasslands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector – blog; link available here]

Meanwhile, newly-discovered pests continue to appear and require research and management. The most troubling current example is beech leaf disease. It’s killing beech trees from Ohio to Maine and south to Virginia.

These introduced pests usually first appear in cities or suburbs because they arrive on imported goods shipped to population centers. The immediate result is enormous damage to urban forests. A recently published article (“Hotspots of pest-induced US urban tree death, 2020–2050”), projects that, by 2050, 1.4 million street trees in urban areas and communities will be killed by introduced insect pests. Removing and replacing these trees is projected to cost cities $30 million per year. Additional urban trees – in parks, other plantings, on homeowners’ properties, and in urban woodlands – are also expected to die.

As we know, newly-arrived pests don’t stay in those cities. Some spread on their own. Others are carried far and wide on firewood, plants, patio furniture, even storage pods. And so they proliferate in rural and wildland forests, including US National Forests.

As we know too well, many pests—especially the highly damaging wood-borers—arrive in inadequately treated crates, pallets, and other forms of packaging made of wood. Other pests—e.g., spotted lanternfly —take shelter, or lay their eggs, in or on virtually any exposed hard surface, such as steel or decorative stone.

Imports from Asia have historically transported the most damaging pests. Unfortunately, imports from Asia have reached unprecedented volume – currently they’re running at a rate of 20 million shipping containers per year. Research findings lead to an estimate that at least 7,500 of these containers are carrying a tree-killing pest. The “Hotspots” authors found that if a new woodborer that attacks maples or oaks is introduced, it could kill 6.1 million trees and cost American cities $4.9 billion over 30 years. The risk would be highest if this pest were introduced to the South – and southern ports are receiving more direct shipments from Asia!  

Some types of pests—especially plant diseases and sap sucking insects —come on imported plants. A principle example is sudden oak death (SOD; and which attacks more than 100 species of trees and shrubs). Other examples are the rapid ʻōhiʻa death pathogen that threatens Hawai`i’s most widespread tree, ʻōhiʻa lehua; and beech leaf disease, a newly discovered threat that is killing beech trees in a band stretching from Ohio to Maine.

Background on Specific USDA Funding Requests

APHIS

To reduce the risk of new pest introductions and strengthen response to many important pests, please ask your member of Congress and Senators to support appropriations that support key APHIS programs in the table above. (I assume you know that APHIS is responsible for preventing introduction and spread of invasive pests. While most port inspections are carried out by the Department of Homeland Security’s Bureau of Customs and Border Protection, APHIS sets the policy guidance. APHIS also inspects imports of living plants.)

Thank your member for the incremental increases in funding for these programs in FY22 but suggest that a more substantial investment is warranted.  

The Tree and Wood Pests account supports eradication and control efforts targeting principally the Asian longhorned beetle (ALB) and spongy (formerly gypsy) moth. Eradicating the ALB normally receives about two-thirds of the funds. The programs in Massachusetts, New York, Ohio, and South Carolina must continue until eradication succeeds.

The Tree and Wood Pests account formerly also funded APHIS’ emerald ash borer (EAB) regulatory program. APHIS terminated this program in January 2021. The probable result is that EAB will spread more rapidly to the mountain and Pacific Coast states. Indeed, the “Hotspots” article identified Seattle and Takoma as likely to lose thousands of ash trees in coming decades. This result shows what happens when APHIS programs are inadequately funded.

Re: the plant diseases and sap sucking insects that enter the country on imported plants, APHIS’ management is through its Specialty Crops program. Repeatedly, SOD-infected plants and have been shipped from nurseries in the Pacific Coast states to vulnerable states across the East and South. Clearly this program needs re-assessment and – perhaps – additional funding.

The Specialty Crops program also is home to APHIS’ efforts to counter the spotted lanternfly, which has spread from Pennsylvania to Maryland, Delaware, New Jersey, Virginia, West Virginia, Ohio, even Indiana. This pest threatens both native trees and agricultural crops – including hops, grapes, apples, and more. California has adopted a state quarantine in hopes of preventing its introduction to that state. Still, APHIS has not established a quarantine.

Please ask the Congress to support the Administration’s request for $219 million for the Specialty Crops program. However, urge them to adopt report language to ensure that APHIS allots adequate funding under this budget line to management of both sudden oak death and spotted lanternfly.

Two additional APHIS programs are the foundation for effective pest prevention. First, the Pest Detection program is key to the prompt detection of newly introduced pests that is critical to successful pest eradication or containment. Please ask the Congress to fund Pest Detection at $30 million. Second, the “Methods Development” program enables APHIS to improve development of essential detection and eradication tools. Please ask the Congress to fund Methods Development at $23 million.

Please ask your member of Congress to support the Administration’s request for a $50.794 million fund for management of emergencies threatening America’s agricultural and natural resources. This program includes a $6 million increase for work with the Climate Conservation Corps specifically targetting invasive species. Although the details are not yet clear, the program’s focus will be to improve surveillance and mitigation methods.

US Forest Service

The USFS has two programs critical to managing non-native tree-killing pests – Forest Health Management (or Protection; FHP) and Research and Development (R&D). FHP provides technical and financial assistance to USFS units (e.g., National forests and regions), other federal agencies, states, municipalities, and other partners to detect and manage introduced pests – including several that APHIS regulates and dozens that it does not. R&D funds efforts to understand non-native insects, diseases, and plants – which are usually scientific mysteries when they first are detected. Of course, this knowledge is crucial to effective programs to prevent, suppress, and eradicate the bioinvader. See the table at the beginning of the blog for specific funding requests for each program.

The Forest Health Management Program (FHP) has two funding streams: Federal Lands and Cooperative Lands (all forests under non-federal management, e.g., state and private forests, urban forests). Both subprograms must be funded in order to ensure continuity of protection efforts – which is the only way they can be effective. Some members of Congress prefer to focus federal funding on National forests. However, allowing pests to proliferate until they reach a federal forest border will only expose those forests to exacerbated threats. Examples of tree-killing pests that have spread from urban areas to National forests include the hemlock woolly adelgid, emerald ash borer, polyphagous and Kuroshio shot hole borers, sudden oak death, and laurel wilt disease. [All profiled here]

Adequate funding for FHP is vital to realizing the Administration’s goals of ensuring healthy forests and functional landscapes; supporting rural economies and underserved communities; enhancing climate change adaptation and resilience; and protecting biological diversity.

Please ask your Member of Congress and Senators to provide $51 million for work on non-federal cooperative lands. This level would partially restore capacity lost over the last decade. Since Fiscal Year (FY) 2010, spending to combat 11 specified non-native insects and pathogens fell by about 50%. Meanwhile, the pests have spread. Also, please ask your Member and Senators to support a $32 million appropriation for the Federal Lands subprogram for FY23 which is allocated to pests threatening our National forests directly.

A vital component of the FHP program is its leadership on breeding pest-resistant trees to restore forests decimated by pests. FHP’s Dorena Genetic Resource Center, in Oregon, has developed Port-Orford cedar seedlings resistant to the fatal root-rot disease. and blog. These seedlings are now being planted by National forests, the Bureau of Land Management, and others. In addition, pines with some resistance to white pine blister rust are also under development. The Dorena Center offers expert advice to various partners  engaged in resistance-breeding for Oregon’s ash trees and two tree species in Hawai`i, koa and ʻōhiʻa. and blog.

The USFS research program is well funded at $317 million. Unfortunately, only a tiny percentage of this research budget has been allocated to improving managers’ understanding of specific invasive species and, more generally, of the factors contributing to bioinvasions. Funding for research conducted by USFS Research stations on ten non-native pests decreased from $10 million in Fiscal Year 2010 to just $2.5 million in Fiscal Year 2020 – less than 1% of the total research budget. This cut of more than 70% has crippled the USFS’ ability to develop effective tools to manage the growing number of pests.

To ensure the future health of America’s forests, please ask your Member of Congress and Senators to request the Subcommittee to include in its report instructions that USFS increase the funding for this vital research area to 5% of the total research budget. The $16 million would fund research necessary to improving managers’ understanding of invasive forest insects’ and pathogens’ invasion pathways and impacts, as well as to developing effective management strategies. Addressing these threats is vital to supporting the Administration’s priorities of increasing adaptation and resilience to climate change and implementing nature-based solutions.

The USFS Research and Development program should expand its contribution to efforts to breed trees resistant to non-native pests; programs deserving additional funding include hemlocks resistant to hemlock woolly adelgid; ashes resistant to emerald ash borer; beech resistant to both beech bark disease and beech leaf disease; link to DMF and elms resistant to Dutch elm disease. The Research program also continues studies to understand the epidemiology of laurel wilt disease, which has spread to sassafras trees in Kentucky and Virginia.

Members of House Appropriations Committee

STATEMEMBERAPHIS APPROPUSFS APPROP
ALRobert AderholtX 
CalifBarbara Lee
David Valadao
Josh Harder
X
X  
   

X
FLDebbie Wasserman       ScultzX   
GASanford BishopX 
IDMike Simpson X
ILLauren UnderwoodX 
MDAndy HarrisX 
MEChellie PingreeXX
MIJohn MoolenaarX 
MNBetty McCollumXX
NVSusie Lee
Mark Amodei
 X
X
NYGrace MengX 
OHMarcy Kaptur
David Joyce
 X
X
PAMatt Cartwright X
TXHenry CuellarX 
UTChris Stewart X
WADan Newhouse
Derek Kilmer
X
X
WIMark PocanX 

Members of Senate Appropriations Committee

STATEMEMBERAPHIS APPROPUSFS APPROP
AKLisa Murkowski X
CalifDiane FeinsteinXX
FLMarco Rubio X
HIBrian SchatzX 
INMike BraunX 
KSJerry MoranX 
KYMitch McConnellXX
MDChris Van Hollen X
MESusan CollinsX 
MSCindy Hyde-SmithXX
MORoy BluntXX
MTJon TesterXX
NDJohn HoevenX 
NMMartin HeinrichXX
ORJeff MerkleyXX
RIJack Reed X
TNBill Hagerty X
VTPatrick LeahyXX
WVShelly Moore Capito X
WITammy BaldwinX 

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

West Coast Responding to EAB

nearly pure stand of Oregon ash in Ankeny National Wildlife Refuge, Oregon; photo by Wyatt Williams, Oregon Department of Forestry

While Michiganders document the impacts of the emerald ash borer (EAB) there, conservationists on the West Coast are jump-starting efforts to save their regional species, Oregon ash (Fraxinus latifolia). Earlier field tests in the Midwest showed that EAB will attack Oregon ash (press release) – something West Coast state would like to counter as early and effectively as possible.

Oregon ash is a wide-ranging species, occurring from California to Washington and possibly into British Columbia. The species has not been studied extensively (it is not a timber species!), but it is clearly an imponearlrtant component of riparian forests. In wetter parts of the Willamette Valley, ash is the predominant tree species. See the photo of the riparian forest in the Ankeny National Wildlife Refuge; this forest is nearly 100% Oregon ash (ODA/ODF EAB Response Plan).

As is true in the Midwest, ash provides important food and habitat resources along creeks and rivers where seasonally high water-tables can exclude nearly all other tree species. Standing and fallen dead ash biomass can alter soil chemistry and affect rates of decomposition, nutrient, and water cycling, i.e., nutrient resource availability for the remaining trees. Gaps in tree canopy can increase soil erosion, stormwater runoff and elevated stream temperatures. In dense stands of Oregon ash, understory vegetation is often sparse, consisting primarily of sedges. The authors of the Response Plan anticipate invasion by non-native plants into canopy gaps caused by the loss of ash trees as a result of an EAB invasion. In Michigan, though, it is the sedges that dominate these gaps.

The Oregon Department of Forestry, the state Department of Agriculture, and other entities have actively participated in “don’t move firewood” campaigns for at least a decade. The Departments of Forestry and Agriculture also led a team that prepared the EAB Response Plan in 2018 (full citation at the end of this blog). It lays out in considerable detail the roles of both government agencies and non-governmental stakeholders. Oregon’s quarantine is broad, covering all insects not on an approved list (Williams, pers. comm.)

California has inspected incoming firewood for years. In April 2021 – after APHIS terminated the federal quarantine on EAB — California Department of Food and Agriculture established a state quarantine on the beetle and articles that could transport it into the state. In doing so, CDFA noted that commercially grown olive trees might also be at risk to EAB.

Washington State operates a statewide trapping program for invasive insects. There has also been significant attention to non-native insect threats to urban forests. These have included a study in 2016 led by the Washington Invasive Species Council (WISC). It involved a partnership of WISC with the Washington Department of Natural Resources Urban and Community Forestry Program as well as and statewide stakeholder meetings [Bush, pers. comm.].

Of these various state-wide initiatives, the institutions in Oregon appear to be most pro-active. The Tualatin Soil and Water Conservation District provided $10,000 to fund some of the genetics work and testing for EAB resistance. Other funding came from the USDA Forest Service Forest Health Protection unit of State and Private Forestry (not from USFS’ Research Program). As described by USFS geneticist Richard Sneizko in an article in the publication TreeLine (full citation at end of blog), participants hope to find at least some level of genetic resistance to EAB. Any such resistance might be deployed in several ways: 1) promoting reproduction by resistant trees to enhance their numbers before EAB gets to Oregon; 2) using seeds from resistant trees for restoration of natural areas; or 3) cross-breeding resistant trees to build genetically diverse stocks of resistant trees for future restoration.

Participants think it is vitally important to work from seeds collected over much of the range of Oregon ash – first, to search for probably very rare resistant trees; and second, to preserve the full diversity of the tree species’ genome so that restored ash will be adapted to the wide variety of conditions in which ash grow.

Participants in this effort include the forest genetics/tree improvement community – specifically, the USDA Forest Service Dorena Genetic Resource Center (located in Cottage Grove, Oregon) and Washington State University at Puyallup Research & Extension Center. Also engaged is the public gardens community, specifically the Huntington Botanical Gardens in San Marino, Los Angeles County.  The garden is collecting seed of Oregon and other western ashes from California and Washington State.

The first step in assessing resistance is collecting seed from ash trees across the range of Oregon ash. This began in 2019. Carried out by, inter alia, some USFS and Interior’s Bureau of Land Management units, Oregon State University, citizen scientists [Sniezko] and the Oregon Department of Forestry [press release & Sniezko pers. comm.] Also, some seeds were collected in Washington State in 2020. Additional collections in Oregon are scheduled for 2022.

The collected seeds have been evaluated for vitality and stored by the USFS Dorena Center and at the USFS National Seed Lab (Macon, GA).

Oregon ash planting at Dorena; photo by Emily Boes

The USFS Dorena Center and Washington State University have begun germinating and growing some of the seedlings for various tests of possible resistance. There is concern that the 2021 drought might have killed some of the seedlings in Oregon; those in Washington are not affected. The initial seedlings are mostly from Oregon but there is space to add additional families from a wider geographical area. Experimenters plan to collect data annually on bud break, yearly growth, and any diseases or pests that develop on the trees. (Chastagner pers. comm.)

The next step is systematic testing whether some of the ash show genetic resistance to EAB. Richard Sneizko has sent seedlings of 17 ash families to USFS colleague Dr. Jennifer Koch. She operates a breeding facility in northern Ohio where they can be tested for resistance. Testing is expected to begin this year. [Tree Line]

The Dorena Center is also helping a researcher at Penn State University, Dr. Jill Hamilton, to set up a landscape genomics project. She will evaluate the genetic variability in the species by using leaf samples from about 20 trees from many populations across the Oregon ash’s range (California to British Columbia).  This potentially includes a collection from the Dorena population of ash in late Spring 2022. [Sniezko]

These various ash plantings can also be “sentinel” plantings to assist in early detection of newly arriving EAB. [Tree Line]

SOURCES

Bush J. Executive Coordinator | Washington Invasive Species Council

ODF and ODA Emerald Ash Borer Readiness and Response Plan. 2018. 

ODF press release Feb 24, 2022

Treeline Newsletter May 13, 2021. Richard Sniezko. Is There a Future for Oregon Ash? Forest Genetics to the Rescue? Genetic & Emerald Ash Borer Resistance Projects https://www.nnrg.org/wp-content/uploads/2022/02/Treeline_newsletter-June-2021.pdf

The newsletter is issued by Bonneville Environmental Foundation for a consortium of conservation agencies

Sniezko pers comm Feb 2022  22-2/24

A video explaining the campaign to save Oregon ash is at https://youtu.be/uZmfLrxEA7g or https://youtu.be/S8y-XK285S8

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Restoring Port-Orford cedar – a role for you!!!!

Port-Orford cedar; photo by Julie Kierstead

I report here on recent developments on breeding resistant trees. These include both promising results from decades-long efforts and also a promising start to addressing a new challenge.

These programs have benefited from major commitments by the USDA Forest Service. I hope they encourage similar commitments for other priority species – such as those named by the CAPTURE program.  

Port-Orford cedar – ready to be planted in the forest!  

Scientists who have been working for decades to breed seedlings of Port-Orford cedar (POC) trees resistant to the root rot caused by Phytophthora lateralis https://www.dontmovefirewood.org/pest_pathogen/port-orford-cedar-root-disease-html/now say that they have seedlings ready for planting in the forest. They made this case in a webinar in late February. It can be viewed here. The full webinar runs somewhat over two hours.

The scientist who led early studies of POC and the root disease, Don Zobel, Professor Emeritus, Oregon State University, described the ecological requirements that should guide planting programs. POC produces high-calcium litter. It grows from the sea coast to 1950 meters elevation, on sand dunes, fens, soils with hardpans; mafic & ultramafic rocks (serptentines) and fertile soils on some sedimentary rocks. POC is less shade tolerant than western hemlock but more fire tolerant. It can form a secondary canopy under Douglas-fir and supercede other conifers when fire occurs repeatedly. The tree needs surface water, e.g., seepages and stream sides; but the water must be flowing, not stagnant. Seedlings are especially vulnerable to drying during winter. 

[I posted a separate blog about other trees native to this region, including serpentine soils, here.]

One purpose of the webinar was to encourage owners and managers of lands within POC’s historic range (see the map under Dr. Zobel’s presentation) to begin planting the species in appropriate sites. With this in mind, Dr. Zobel emphasized criteria for selecting sites:

  • Climates in coastal areas of the range are less likely to change under climate change
  • Quartenary marine terraces are the best geologic type; Lookingglass and Roseburg geologic types are also acceptable
  • Availability of water during summer, e.g., streamside and seepage areas. Try planting beneath alder. However, avoid interior valley stream corridors if the soils are not ultramafic. And avoid stagnant water.
a POC tree in a bog next to the endemic pitcher plant of southern Oregon, Darlingtonia californica; photo by Richard Sniezko

Dr. Zobel also says one should plant pathogen-resistant genotypes and pay attention to local genetic varieties (which have largely been determined).

Dr. Richard Sniezko of the USFS Dorena Genetic Resource Center described the Center’s 30-year effort to find and exploit resistance to the pathogen. Funding has come from the USFS Forest Health Protection program, other parts of the USFS, and the Bureau of Land Management (BLM). The goal all along has been to produce seedlings for restoration to the forest – meaning not just resistant to the pathogen but also adapted to various local conditions.  The program can now provide resistant seedlings in large quantities for planting by landowners and public land managers.

Dr. Sniezko emphasizes that success depends on engagement of four sets of people: research by university scientists; application of that research and development of propagule growing methods by the Dorena Center; support from USFS leaders to continue the program; involvement of land managers who choose to plant the resistant seedlings.

USFS and BLM staff described efforts to determine where POC grows on land under their management, the status of disease in those areas, and efforts to slow the spread of the disease, especially along roadsides and as result of timber or engineering projects. Some of this sanitation work has been funded by USFS Forest Health Protection program — not the National Forest System.

Richard Sniezko stated that the seedlings’ quantitative disease resistance means that some seedlings will die.  He expects 40-50% survival of seedlings from many of the breeding zones. This is well above the level of resistance in un-improved populations.

Both BLM and the Rogue-River-Siskiyou National Forest have planted tens of thousands of resistant seedlings in recent years and plan to continue. Funding provided by COVID-19 legislation might allow increased effort.  [See Dr. Sniezko’s presentation on the webinar for photos from some plantings.] 

POC seedlings at Dorena; photo by Richard Sniezko

Norma Kline of the Oregon State University extension program has distributed more than 10,000 seedlings to small/non-industrial landowners. Many of the recipients shared seedlings with neighbors or are coordinating their planting over a large area. They were motivated primarily by conservation concerns. Her monitoring showed that the POC seedlings survived but did not thrive under dense tanoak canopy. They did well in competition with grass in areas near the coast where there was more moisture. They also did well under Douglasfir as long as there was dappled sunlight.

The non-governmental organization American Forests is likely to participate actively in the planting effort.

In an email to me, Dr. Sniezko asks that people who have planted POC outside its native range inform him where the tree(s) is/are thriving. This information would enhance scientists’ understanding of the species’ environmental tolerances.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Rapid ‘Ohi‘a Death – Comprehensive New Program Begins – Challenges to Achieving Success

ʻōhiʻa blossoms

‘Ohi‘a (Metrosideros polymorpha) is the most abundant native forest tree in Hawai`i and of enormous ecological, cultural, and economic importance. Five species of endemic Metrosideros are recognized on the Hawaiian islands. Only one — M. polymorpha — is found throughout the state. Eight varieties are recognized. These varieties inhabit different environments and have adapted to selective pressures characteristic of these locations. There are at least five other species in the Metrosideros genus, each endemic to one or a few nearby islands. Blaine et al. (2022) [full citation at end of this blog] provide a helpful summary of the tree’s ecological importance and its apparently on-going speciation.

‘Ohi‘a provides habitat for endemic birds, insects, and plants, many of which are endangered. Thus, conservation of this species — and all Hawaiian Metrosideros – is vital for the conservation of countless other taxa. In addition, high elevation ʻōhiʻa forests protect vitally important watersheds across the state. For Native Hawaiians, ʻōhiʻa is a physical manifestation of multiple Hawaiian deities so is the subject of many proverbs, chants, stories, and a foundation of scared hula. Finally, the tree is beautiful!

Native Hawaiian forests face multiple threats — invasive animals and plants, wildfire, and land-use changes. Due to such threats, natural ʻōhiʻa regeneration is largely absent in most lower-elevation forests. In this case, competition with invasive species and the presence of diseases such as ʻōhiʻa rust (Austropuccinia psidii) are probably the specific causes. Multiple government and non-governmental entities have made substantial effort to mitigate these threats.

ROD-infected ʻōhiʻa; photo by J.B. Friday

The disease Rapid ‘Ohi‘a Death (ROD) is an unprecedented threat to this species and the forests it constitutes. The disease is caused by two newly described fungal pathogens: Ceratocystis lukuohia and C. huliohia. The disease caused by C. lukuohia is more severe. To date it has been detected on the two islands farthest apart in the chain — Hawai`i (the Big Island) and Kaua‘i. C. huliohia causes a canker disease that kills trees more slowly. It is more widespread, found on Maui and O‘ahu in addition to Hawai`i and Kaua‘i. Blaine et al. (2022) and the profile here describe the two diseases’ epidemiologies, progression, impacts, and challenges.

Because of the clear threat to Hawaiian ecosystems, ecosystem services, and cultural assets, considerable effort has put into delimitation and research on possible mitigation actions since ROD was discovered in 2010. The first strategic plan covered the period 2017–2019. It focused on expanded efforts to map outbreaks, research on the epidemiology of the pathogens, and most-promising management practices. The second strategic plan covers 2020–2024. It provides for continued surveillance and improvement of these technologies; expanding outreach and public engagement; research on possible vectors of the pathogens; collection and preservation of seeds for research and future restoration; and comprehensive evaluation and development of disease resistance in ʻōhiʻa.

Soon after the causal agents were clarified, the USDA Agriculture Research Service (ARS) began screening for disease resistance. By 2016, ARS had demonstrated that five individuals from two varieties of M. polymorpha had survived inoculation by the more virulent pathogen, C. lukuohia. Their survival raised hopes that natural resistance might be present in wild populations of at least some varieties. However, more comprehensive screening of trees from throughout the species’ range is needed to provide an accurate baseline on the frequency, level, and distribution of genetic resistance to both pathogens. The goal is to produce material resistant to both pathogens that can be used to preserve the ecology, culture, and biotic communities that are dependent on this tree species.

To carry the expanded effort forward, in 2018 a collaborative partnership of state, federal, and non-profit groups was formed. Participants in the ‘Ohi‘a Disease Resistance Program (‘ODRP) include: the Akaka Foundation for Tropical Forests; USDA’s Forest Service and Agriculture Research Service; the state’s Division of Forestry and Wildlife and Agriculture Research Center; programs of the University of Hawai‘i at Manoa and at Hilo; Purdue and Arizona State universities; the Tropical Hardwood Tree Improvement and Regeneration Center; and Kalehua Seed Conservation Consulting.

Blaine et al. (2022) have now outlined a framework to guide the overall effort to identify and develop ROD resistance in M. polymorpha and, possibly, all Hawaiian Metrosideros species. The framework calls for the following activities:

(1) evaluating and operationalizing methods for inoculation-based screening and greenhouse-based production of test plants; and

(2) short-term greenhouse screenings of seedlings and rooted cuttings sampled from native Metrosideros throughout Hawai’i.

Once these tasks have been achieved, the effort is expected to expand to address:

(3) establishing field trials to validate the short-term greenhouse assays and monitor durability and stability of resistance;

(4) understanding environmental (climate, soils) and genetic (vascular architecture, wound response)

drivers of susceptibility and resistance to characterize the durability and stability of genetic resistance to ROD;

(5) developing remote sensing and molecular methods to rapidly detect ROD-resistant individuals;

(6) if necessary, conducting breeding to increase the efficacy of resistance and improve durability of ROD resistance; and

(7) supporting already established and ongoing Metrosideros conservation, including state-wide seed collection and banking, with information on not only genotypes resistant to ROD but also production of ROD-resistant seed.

Blaine et al. (2022) outline how to proceed on each step, and describe the challenges that must be overcome. Challenges range from building growing and screening capacity to handle the thousands of plants required, to developing the remote sensing tools to identify diseased trees in the forest, to identifying sites for seed orchards. Actions by ‘ODRP will focus on  Stage II screening in the field to examine the durability of resistance under the wide variety of ecological conditions in which ʻōhiʻa grows and in the presence of a potentially evolving pathogen. Resistance studies must expand beyond M. polymorpha varieties from only one island (the Big Island) to include the other Hawaiian Metrosideros taxa.  

Once ROD-resistant M. polymorpha trees are discovered and groundwork has been laid to satisfy initial needs for resistant tree seedlings for forest restoration, scientists can begin research into the genetic basis of ROD resistance. This knowledge will assist breeding efforts which might be necessary if resistance to one of the pathogens does not confer resistance to the other, since the goal is to provide seedlings that are resistant to both.

Blaine et al. (2022) note that the state and others continue efforts to address other aspects of ROD management. These include

1) controlling the spread of the pathogen through local quarantines on movement of infected material and increased public education on bio-sanitation for forest users;

2) testing repellants to reduce beetle attack on infected trees and subsequent frass production.

3) reducing wounding of trees by fencing more pristine forests and removing feral ungulates

SOURCE

Blaine C. Luiz, Christian P. Giardina, Lisa M. Keith, Douglass F. Jacobs, Richard A. Sniezko, Marc A. Hughes, James B. Friday, Philip Cannon, Robert Hauff, Kainana Francisco, Marian M. Chau, Nicklos Dudley, Aileen Yeh, Gregory Asner, Roberta E. Martin, Ryan Perroy, Brian J. Tucker, Ale.alani Evangelista, Veronica Fernandez, Chloe Martins-Keli.iho.omalu, Kirie Santos, Rebekah Ohara. 2022. A framework for establishing a rapid ‘Ohia death resistance program. New Forests. https://doi.org/10.1007/s11056-021-09896-5  

See also the video at https://www.bigislandvideonews.com/2019/06/16/video-to-save-ohia-a-genetic-resistance-program-will-be-built/

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Forest Pest Threat to Africa

Eucalyptus plantation in Kwa-Zulu-Natal, South Africa; Kwa-Zulu-Natal Dept. of Transportation

Graziosi et al. (full citation at the end of the blog) point out that trees are crucial for Africa’s future. Eight hundred of the 4,500–6,000 indigenous tree species provide significant food. As elsewhere, trees provide wood and other extractive resources essential for economic growth. They also support biodiversity and mitigate current and impending climatic variations. Africa– especially the Sub-Saharan countries – is already considered highly vulnerable to climate change.

According to Graziosi et al., the cumulative economic impact of all invasive species in Africa is expected to exceed $1.2 billion per year. The total invasion cost as a proportion of GDP for many African countries is among the highest in the world. This raises the stakes for developing locally appropriate management strategies across the continent.

Responding effectively to this threat is hampered by gaps in data as well as some countries’ limited capacity for biosecurity. Graziosi et al. say that improved knowledge of taxonomy, distribution, and damage caused by these organisms is essential. Such knoledge will be crucial to develop continent-wide strategies to manage this emergency and to enhance capacity for country-level interventions.

Native and alien pests. Indigenous and plantation trees

Africa’s trees and their services are threatened by both native pests and accelerating introductions of pests and diseases from elsewhere. Long-established and new invaders increasingly affect planted forests of exotic eucalypts, pines, and Australian acacias, as well as important indigenous trees. Graziosi et al. note that the U.N. Food and Agriculture Organization (FAO) in an annex to a report issued in 2009 recorded about100 species of forest pests affecting trees in planted and natural forests across Africa. Half are native insects and pathogens, a third are alien; about 15% are of unknown origin. Considering all pests, broadleaf trees (predominantly native) are most affected.

The result is damage from the local – e.g., to rural livelihoods – to the continental – e.g., to economic development and biological diversity across Africa. Moreover, pests exacerbate widespread loss of forest cover. Overall, African forests are shrinking at the rate of almost 0.5% annually. This deforestation is affecting particularly natural forests; planted forests are actually growing 1.3% annually.  

Exotic plantation trees face severe threats. More than 47 native and 19 non-indigenous defoliators, sap-feeders, wood- and shoot-borers attack plantations of Acacia spp., Eucalyptus spp., Pinus spp., and teak (Tectona grandis). About 90% of pathogens of plantation forestry are either non-indigenous or of uncertain origin. Eucalyptus alone are severely damaged by 15 species of pathogens. These organisms are listed in Tables 1 and 2.

Numerous native insect species, known as pests of indigenous trees, have reportedly widened their host range and now damage exotic trees too. Some introduced insects appear to pose significant threats to native tree species. One example is the Cypress aphid Cinara cupressi, which is attacking both exotic cypress plantations and the native African cedar Juniperus procera. Some fungi in the family Botryosphaeriaceae are latent pathogens infecting a wide range of hosts including indigenous Acacia. Dieback of large baobab trees was recently reported from southern Africa. While various microorganisms are associated with these symptoms, the specific cause is still uncertain.

A baobab tree in Limpopo region of South Africa; Wikimedia

The risk currently appears to be particularly high in South Africa. The country’s flora is highly diverse and has a high level of endemism. In fact, South Africa is home to the Earth’s smallest floral kingdom, the Cape Floral Kingdom. It is also the apparent hot spot for pest introductions from overseas (see below). Phytophthora cinnamomi is attacking native Proteaceae in South Africa. According to Graziosi et al., an “incredible diversity” of Phytophthora taxa is present, portending threats to additional plant species. Other pathogens are attacking native conifers in the Podocarpus genus, Ekebergia capensis (Meliaceae), and Syzygium trees.

Protea repens and fynbos vegetation near Table Mountain; photo by Mike Wingfield

There is a clear pattern to further spread: pests first introduced to South Africa often spread. Examples include several insects and pathogens on Eucalyptus and the wood-boring pest of pine Sirex noctilio. This pattern is explained by two main factors. South Africa has a high capacity to detect introduced species. Also, there is an active plantation forestry sector that imports propagules. This offers opportunities for contaminating organisms to be introduced simultaneously.

Furthermore, as Graziosi et al. note, determining the geographic origin of significant proportion of pathogens is extremely difficult – an issue I will discuss in a separate blog based on a publication by primarily South African scientists. Some non-indigenous pathogens have been on the African continent for a long time. The Armillaria root rot pathogen apparently was introduced to South Africa with potted plants from Europe in the 1600s! They note also that many non-indigenous pathogens are probably already established on the continent but not yet detected due to the organisms’ cryptic nature and lagging detection abilities.

The future of African forests

African countries expect economic growth with associated increased trade with countries off-continent. The probable result will be to accelerate the rate of species introductions and spread. However, as climate change worsens, managers will find it increasingly difficult both to predict introduced species’ impact and to implement management programs.

This led Graziosi et al. to call for urgent improvements in plant biosecurity across the continent. They advocate improved coordination at regional and international levels. The list of needed actions is a familiar one: development and application of improved diagnostic tools, updated plant exchange regulations, and revised trade policies.

Graziosi et al. also call for development of effective control and management options. They suggest biocontrol, innovative silviculture practices, and selection of resistant trees. The good news is that African countries have already initiated programs to conserve tree germplasm and domesticate indigenous species, including establishment of field gene banks of high-priority indigenous trees. I have previously praised South African efforts, specifically reports here and here.

Mudada, Mapope, and Ngezimana (2022) describe the risk from introduced species to agriculture and human well-being in southern Africa beyond forestry. The region is already ravaged by food insecurities and hidden hunger. It would be devastated if the global average of crop loss due to plant diseases (10-16%) occurs there. They say these losses can be avoided with improved biosecurity mechanisms focused primarily on pest exclusion and plant quarantine regulations.

SOURCES

Graziosi, I. M. Tembo, J. Kuate, A. Muchugi. 2020 Pests and diseases of trees in Africa: A growing continental emergency. Plants People Planet DOI: 10.1002/ppp3.31 

Mudada, N. Mapope, N., and Ngezimana, W. 2022 – The threat of transboundary plant pathogens to agricultural trade in Southern Africa: a perspective on Zimbabwe’s plant biosecurity – A review. Plant Pathology & Quarantine 12(1), 1–33, Doi 10.5943/ppq/12/1/1

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter the United States and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Reminder: ask your MC & Senators to sponsor tree-restoration bill!

The Invasive Species Prevention and Forest Restoration Act (H.R. 1389) is before Congress. It is co-sponsored by Reps. Peter Welch [VT], Ann Kuster and Chris Pappas [NH], Chellie Pingree [ME], Elise Stefanik and Antonio Delgado [NY], Brian Fitzpatrick [PA], Mike Thompson [CA], Deborah Ross [NC].

Ask your Member of Congress/Representative to co-sponsor this bill. Ask your Senators to sponsor a companion bill.

In summary, this bill will:

  • Expand USDA APHIS’ access to emergency funds to eradicate or contain newly detected pest outbreaks.
  • Establish a pair of grant programs to support strategies aimed at restoring tree species decimated by non-native plant pests or noxious weeds. Such strategies include biological control of pests and enhancement of a tree host’s pest resistance.
    1. One grant program supports research to explore and develop these strategies.
    2. The second program support application of resistance breeding and other measures to restore forest tree species. Funded programs must incorporate a majority of the following components: collection and conservation of native tree genetic material; production of sufficient numbers of propagules; preparation of planting sites in the species’ former habitat; planting and post-planting maintenance.
  • Mandate a study to identify actions to overcome the shortfall of mission, leadership, and prioritization; identify agencies’ expertise and resources; improve coordination among agencies and with partners; and develop national strategies for saving tree species.

Organizations eligible for these grants include federal agencies; state cooperative institutions; colleges or universities offering a degree in the study of food, forestry, and agricultural sciences; and nonprofit entities with non-profit status per §501(c)(3) of the Internal Revenue Code.

Endorsements: Vermont Woodlands Association, American Forest Foundation, The Association of Consulting Foresters (ACF), Audubon Vermont, Center for Invasive Species Prevention, Ecological Society of America, Entomological Society of America, Maine Woodland Owners Association, Massachusetts Forest Alliance, National Association of State Foresters (NASF), National Woodland Owners Association (NWOA), The Nature Conservancy (TNC) Vermont, New Hampshire Timberland Owners Association, North American Invasive Species Management Association (NAISMA), Pennsylvania Forestry Association, Reduce Risk from Invasive Species Coalition, The Society of American Foresters (SAF), and a broad group of university professors and scientists.

Legislative Point of Contact: Alex Piper, Legislative Assistant, office of Rep. Welch. Contact me – providing your email! – if you wish me to send you Alex’ contact information.  [The “contact” form does not provide your email and I will not reply in a public way.]

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Interactions of 2 (of 3) Threats to Beech

American beech (Fagus grandifolia) is a widespread and beautiful tree of the eastern deciduous forest. Its range reaches from Nova Scotia to eastern Wisconsin, then south to Mississippi and Louisiana and east to mid-Georgia. It is an important food source for 40 wildlife species, particularly in the northern parts of its range where few other species produce hard mast. (See Lovett et al. 2006.)

Threats

Unfortunately American beech is under threat from three non-native organisms or complexes: 1) beech bark disease, 2) beech leaf disease, and 3) beech leaf mining weevil. A fourth pest, a previously unknown – and still unnamed bark beetle in the genus Agrilus – has been detected in New York City on European beech trees. It is not yet known whether it will attack American beech and, if so, whether it will also cause serious damage (Michael Bohne, USFS, pers. comm.)  

symptoms of beech bark disease; photo by Linda Haugen, USFS; via Bugwood

Beech bark disease (BBD) results from the interaction of the introduced European beech scale insect (Cryptococcus fagisuga) and several fungi in the Neonectria genus – some of which are also introduced. The resulting disease has been killing American beech trees since the beginning of the 20th Century. It has spread from Nova Scotia to much of the tree’s range. It has dramatically altered the composition and structure of stands containing beech.

symptoms of beech leaf disease; photo provided by Jennifer Koch, USFS

Beech leaf disease (BLD) was initially detected in 2012, near Cleveland. As of December, 2021, it has spread due east across New York, Pennsylvania, and New Jersey to the Atlantic, then up the coast through Connecticut and eastern Massachusetts, with a separate outbreak in central Maine. The disease is apparently associated with a nematode, Litylenchus crenatae ssp. mccanni, although additional pathogens, like bacteria, might also play a role. The origin of the North American population of the nematode is unknown; it is a related but separate subspecies from a Japanese nematode (Reed et al. 2022).

American beech defoliated by leaf mining weevil; photo courtesy of Jon Sweeney, CFS

Beech leaf mining weevil (Orchestes fagi) is, so far, limited to Nova Scotia. However, it is expected that the weevil will continue spreading throughout the range of American beech through both natural dispersal and human-assisted movement. Repeated defoliation by the weevil might increases mortality rates in forests that are surviving in the “aftermath” stage of BBD (Sweeney et al. 2020).

A new study (Reed et al. 2022) concludes that, despite being detected only 10 years ago, BLD has already become pervasive in forests surrounding Lake Erie in the U.S. and Ontario. While somewhat more prevalent in U.S. states on the eastern side of the Great Lakes (on 54% of trees) than in Ontario (on 46% of trees), BLD is spreading rapidly and affecting every canopy layer. Mortality is highest in seedlings and saplings; understory saplings die within 2 – 5 years. The occasional mortality of overstory trees occurs within seven years of [observed] infection. Defoliation and mortality of saplings allow more light to pass through to the understory; this is expected to alter plant communities on the forest floor.

Beech scale is more widespread in Ontario (found on 60% of trees) than in the U.S. (38% of trees). This is not surprising since the scale was detected in Ontario in 1960, 24 years before it was detected in portions of Ohio, New York and Pennsylvania included in the study (in 1984). Throughout this region, beech scale is disproportionately affecting overstory trees.

Only 4% of trees throughout the study area are infected with Neonectria cankers. In other words, full-scale beech bark disease is not yet widespread and is spreading surprisingly slowly. Scientists do not understand this phenomenon.

These findings are based on a network of monitoring plots a network of monitoring plots set up in 2019 set up in areas surrounding the Great Lakes. They comprise 34 plots at 17 locations in southwest Ontario and 30 plots at 25 locations in Ohio, Pennsylvania, and New York. In total the plots hold 646 live American beech trees — 412 saplings; 85 in the intermediate/suppressed (subcanopy) category; and 149 in the dominant/codominant (canopy) class.

Forest composition is similar throughout the study area. The most common species in association with American beech are sugar and red maples (Acer spp.), and white and green ash (Fraxinus spp.). Other tree species present include eastern hemlock (Tsuga canadensis), white pine (Pinus strobus), oaks (Quercus spp.), and birches (Betula spp.). Study plots had few invasive plants – although the invasive species present are well-documented to invade forests.

Ontario disease assessment

In Ontario, BLD was identified in 25 of the 34 plots.  It was present on 171 saplings, 53 intermediate trees, and 70 dominant trees. Both prevalence and severity were greatest on intermediate trees. Beech scale was present at all 34 plots. While scales were found on trees of all sizes, they were almost two times more prevalent and were more severe on mature trees than saplings. Neonectria cankers were detected at 34 plots. Neonectria was rare but most severe on dominant trees. Fewer than one third of saplings and one-sixth of mature trees were pest free.

U.S. disease assessment  

BLD was present in 17 of the 30 plots. It was found on 75 saplings, 30 intermediate trees, and 38 dominant trees. Saplings and dominant trees had similar levels of disease; intermediate trees had significantly less. However, BLD severity was twice as high on saplings compared to mature trees. BLD was present on more than half of the seedlings assessed – 46 out of 82. Beech scale was present in 20 of the 30 plots. It was significantly less common and severe on saplings than on mature trees. Neonectria cankers were present in only 4 of 30 plots. Canker prevalence and severity did not differ significantly among size classes.

Distribution and Effects of Beech Scale and BBD

While beech scale attack facilitates invasion by the Neonectria fungi, the disease – BBD complex – had the most limited distribution of the three pests in this study. It was found on only ~4% of beech trees throughout the study area. The disease was first reported there in the early 2000s. Although no one knows why, it has spread more slowly there than in areas to the east (Reed et al. 2022).

As is the case with beech scale, BBD disproportionately affects large diameter trees. Typically, BBD kills more than half of mature beech within 10 years of its arrival. Dying trees produce prolific root sprouts resulting in dense beech sapling understories that impede regeneration of less shade-tolerant tree species. The persistence of thickets of disease-vulnerable small beech perpetuates the disease. BBD is the only forest disease in North America that can inadvertently intensify itself by increasing densities of its host while suppressing other species.

Beech Forest Community Change in Response to Combined Impacts of BBD and BLD

It is unclear how forests will change as beech die. Some expect saplings of species already present — red maple, white ash, and, especially sugar maple — to exploit the canopy gaps. Of course, white and green ash are under attack by the emerald ash borer; DMF their ability to reach the canopy will depend on the success of biocontrol agents.

However, if BBD or BLD resistant beech survive or if BLD fails to persist, future forests might instead consist of beech thickets that would prevent all but the most shade tolerant species from establishing. Heavy deer predation on maple seedlings and saplings might also play a role. A third possibility is that morbidity from BBD and BLD might lead to uneven-aged conditions that allow younger trees — perhaps even shade intolerant species e.g., oaks — to establish.

Invasive plants also have the potential to fill gaps left by declining beech. While maple-beech forests often have sparse understories due to low understory light levels, pest-caused canopy gaps are expected to increase the abundance of invaders, especially in small woodlots and forests near urban areas. Several shade-tolerant invasive shrubs are already present in low numbers: Japanese barberry (Berberis thunbergii), tatarian honeysuckle (Lonicera tatarica), multiflora rose (Rosa multiflora), and buckthorn (Frangula sp.). Reed et al. (2022) note that these species, plus privet and autumn olive, can take advantage of small canopy gaps, especially when soils are disturbed, e.g., by active intervention to counteract the loss of beech.

Precautionary Research and Management

Reed et al. (2022) call for enhanced monitoring of beech forests focused on

  • the timing of BLD presence relative to tree age and size – which might affect competitiveness of sprouting beech in the understory; and
  • compositional and structural change in forests with BLD or to which it is likely to spread

They also recommend abandoning the management approach for BBD currently recommended by foresters. It calls for removing scale-susceptible beech so that resistant genotypes increase in prevalence. In forests with both BBD and BLD, they conclude, management of natural regeneration is unlikely to succeed because BLD will kill sprouts and saplings that might be resistant to scale. They recommend instead active management of the forest to promote mast-producing, shade intolerant species, such as oaks and hickories.

They also recommend increased support for resistance-breeding programs. Such programs already target BBD, based on the estimated 1% of American beech that show some resistance. Now those programs need to incorporate BLD resistance. (Reed et al. note that small numbers of beech show few or no BLD symptoms so might possess resistance or tolerance.)

grafted beech for resistance breeding; photo by Rachel Kappler, then USFS (now Great Lakes Basin Initiative & Holden Arboretum)

Unfortunately, the Canadian beech breeding program’s future funding is highly uncertain. To counter this threat, in part, Reed et al. (2022) suggest cryopreserving beech embryos from Canada to develop a beech conservation collection that would be available for a more robust, future Canadian breeding program. The USFS is trying to develop methods to screen trees for resistance to BLD, specifically to the nematode (J. Koch, USFS, pers. comm.)

Another approach would actively manage beech stands in which potentially BLD-resistant beech grow to help these trees reach the canopy and reproduce. In the absence of management, any BLD-resistant beech seedlings might be overtopped by faster growing, shade-intolerant species – especially if the gaps promote soil drying or sun scald.

Finally, breeding programs need to factor in the beech leaf mining weevil, DMF which — as I noted in the beginning — is spreading across Nova Scotia and could spread to the rest of the native range of beech (Sweeney et al., 2020).

The Department of Agriculture has created a website on the Department’s plant-breeding efforts. It includes a subwebsite on USFS efforts. However, I did not find much useful information there.

SOURCES

Lovett, G.M., C.D. Canham, M.A. Arthur, K.C. Weathers, and R.D. Fitzhugh. 2006. Forest Ecosystem Responses to Exotic Pests and Pathogens in Eastern North America. BioScience Vol. 56 No. 5 May 2006)

Reed, S.F., D. Volk, D.K.H. Martin, C.E. Hausman, T. Macy, T. Tomon, S. Cousins. 2022. The distribution of beech leaf disease and the causal agents of beech bark disease (Cryptoccocus fagisuga, Neonectria faginata, N. ditissima) in forests surrounding Lake Erie and future implications Forest Ecology and Management 503 (2022) 119753

Sweeney J.D., Hughes, C., Zhang, H., Hillier, N.K., Morrison, A. and Johns R. (2020) Impact of the Invasive Beech Leaf-Mining Weevil, Orchestes fagi, on American Beech in Nova Scotia, Canada. Frontiers in Forests and Global Change | www.frontiersin.org 1 April 2020 | Volume 3 | Article 46

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

Breeding Pest Resistance in Trees – Thoughtful Perspectives

Scott Schlarbaum collecting butternuts; photo by F.T. Campbell

I have blogged several times about the need to enhance efforts to breed trees resistant to the most damaging of the hundreds of introduced insects and pathogens. Others concur – see reports by the National Academy of Sciences in 2018; several publications by USFS scientists Richard Sniezko and Jennifer Koch; a workshop hosted by Purdue w/ USFS support, the creation and efforts of several consortia – Whitebark Pine Ecosystem Foundation, Great Lakes Basin Forest Health Collaborative, Forest Restoration Alliance …

Also, Richard J. A. Buggs, of the Royal Botanic Gardens, Kew, recently summarized barriers to tree breeding. It was published as an especially thoughtful editorial in Plants People Planet in anticipation of the International Year of Plant Health in 2020 (see reference at the end of this blog). That issue included several related articles, also noted below.

 R.J.A. Buggs’ Perspective on Tree Breeding

Buggs says the need for tree resistance research is greater than ever before. First, damage caused by introduced insects and pathogen is rising. Plus, we now recognize trees’ importance in capturing atmospheric carbon. He sees encouraging signs of growing public awareness of both factors. Also, he thinks citizen science might reduce the cost of some activities … although he doesn’t name which they are.

Dr. Buggs lists six major hindrances to breeding programs, including some aspects that I, at least, have not considered:

1) Trees’ size and long generation times mean research is necessarily slow. One result is it is hard to formulate research proposals that match funding cycles. This in turn means a dependence on long-term institutional commitment from well-funded organizations, and such institutions are rare.

I point out that the U.S. government – especially the USFS – is one such institution. Unfortunately, it has so far been reluctant to take commit major resources to breeding pest-resistant trees. Every year I urge you to lobby Congress on appropriations for the agency. In this context, do you understand that while the USFS Research budget receives approximately $300 million each year, less than $5 million of that total is allocated to researching invasive species (of all taxa)? Some gaps are filled by projects funded by the Forest Health Program. You will have a new opportunity to lobby Congress for Fiscal Year 2023 in the spring!

2) On the other hand, reliance on long-term institutional funding shelters projects from multidisciplinary peer-review that could introduce improved technology or methods. This lack of peer review also contributes to a perception among other scientists that tree resistance research is a scientific backwater.

3) Similarly, studies requiring a long time horizon don’t fit publication schedules. Again, the result is that the findings often appear only in institutional reports or conference proceedings. This means they are hard to find and often lack external peer review at not only the proposal stage but also before publication.

4) The long decades without clear success in dealing with Dutch elm disease (but see recent encouraging developments here) and chestnut blight (see The American Chestnut Foundation here) gave the impression that resistance breeding of forest trees is impossible. Buggs says pest resistance problems are easier to tackle for other trees.

TACF American chestnut; photo by F.T. Campbell

5) Those considering what efforts to fund might demand complete resistance to the pest. This goal is not only unrealistic – it is often unnecessary. Often lower levels of resistance or tolerance can result in trees that can be self-sustaining. Dr. Sneizko concurs; see his article appearing in this issue.

6) Forest stakeholders differ over the goal of developing resistant trees. Some think any human intervention is unwarranted in wilderness areas. Some want a tree as similar as possible to pre-epidemic trees. Others want a tree that produces more timber.

Other Significant Articles

A second article in the same issue of Plants People Planet (Federman and Zankowski) discusses the USDA’s commitment to new approaches in tree resistance research.

I found a third article that discusses British approaches to mitigating tree pests to be more informative than Federman and Zankowski – although somewhat worrying. Spence, Hill and Morris praise the U.K.’s Plant Health Risk Register, which they say has enhanced vigilance on possible new pest introductions. However, the authors describe resistance breeding as a strategy to be considered “when a pest has established such that a tree population is unable to recover, and where a genetic basis for resistance is demonstrable in a proportion of the tree population.” Dr. Sneizko, and others – and I!  – call for initiating exploration of the potential for resistance breeding much earlier in an invasion.

A fourth article – by Richard Sniezko and colleagues —  describes encouraging levels of partial resistance to white pine blister rust in two western white pines and evidence for both qualitative and quantitative resistance to Phytophtohora lateralis in Port-Orford Cedar.

Port-Orford test seedlings; photo courtesy of Richard Sniezko

A fifth – by Showalter et al. — reports encouraging levels of resistance to both emerald ash borer DMF and ash dieback in European ash. The authors conclude that a breeding program might be a viable solution to both pests.

SOURCE

Special issue of Plants People Planet for 2020  — the International Year of Plant Health. https://nph.onlinelibrary.wiley.com/toc/25722611/2020/2/1

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm