USFS Lays Out Incomplete Picture of the Future

tanoak trees in southern Oregon killed by sudden oak death; photo by Oregon Department of Forestry; this pathogen is not mentioned by USFS RPA report

In August the USDA Forest Service published the agency’s 2020 assessment of the future of America’s forests under the auspices of the Resources Planning Act. [See United States Department of Agriculture Forest Service Future of America’s Forests and Rangelands, full citation at the end of the blog.] To my amazement, this report is the first in the series (which are published every ten years) to address disturbance agents, specifically invasive species. In 2023! Worse, I think its coverage of the threat does not reflect the true state of affairs – as documented by Forest Service scientists among others.

This is most unfortunate because policy-makers presumably rely on this report when considering which threats to focus on.

Here I discuss some of the USFS RPA report and what other authors say about the same topics.

The RPA Report’s Principle Foci: Extent of the Forest and Carbon Sequestration

The USFS RPA report informs us that America’s forested area will probably decrease 1- 2% over the next 50 years (from 635.3 million acres to between 619 and 627 million acres), due largely to conversion to other uses. This decline in extent, plus trees’ aging and increases in disturbance will result in a slow-down in carbon sequestration by forests. In fact, if demand for wood products is high, or land conversion to other uses proceeds apace, U.S. forest ecosystems are projected to become a net source of atmospheric CO2 by 2070.

Eastern forests sequester the majority of U.S. forest carbon stocks. These forests are expected to continue aging – thereby increasing their carbon storage. Yet we know that these forests have suffered the greatest impact from non-native pests.

I don’t understand why the USFS RPA report does not explicitly address the implications of non-native pests. In 2019, Songlin Fei and three USFS research scientists did address this topic. Fei et al. estimated that tree mortality due to the 15 most damaging introduced pest species have resulted in releases of an additional 5.53 terragrams of carbon per year. Fei and colleagues conceded this is probably an underestimate. They say that annual levels of biomass loss are virtually certain to increase because current pests are still spreading to new host ranges (as demonstrated by detection of the emerald ash borer in Oregon). Also, infestations in already-invaded ranges will intensify, and additional pests will be introduced (for example, beech leaf disease).

I see this importance of eastern forests in sequestering carbon as one more reason to expand efforts to protect them from new pest introductions, and the spread of those already in the country, etc.

A second issue is the role of non-native tree species in supporting the structure and ecological functions of forests. Ariel Lugo and colleagues report that 18.8 million acres (7.6 million ha, or 2.8% of the forest area in the continental U.S.) is occupied by non-native tree species. (I know of no overall estimate for all invasive plants.) They found that non-native tree species constitute 12–23% (!) of the basal area of those forest stands in which they occur.

Norway maple (Acer platanoides); one of the most widespread invasive species in the East. Photo by Hermann Falkner via Flickr

Lugo and colleagues confine their analysis of ecosystem impacts to carbon sequestration. They found that the contribution of non-native trees to carbon storage is not significant at the national level. In the forests of the continental states (lower 48 states), these trees provide 10% of the total carbon storage in the forest plots where they occur. (While Lugo and colleagues state that the proportion of live tree biomass made up of non-native tree species varies greatly among ecological subregions, they do not provide examples of areas on the continent where their biomass – and contribution to carbon storage — is greater than this average.) In contrast, on Hawai`i, non-native tree species provide an estimated 29% of live tree carbon storage. On Puerto Rico, they provide an even higher proportion: 36%.

Brazilian pepper (Schinus terebinthifolius) – widespread invasive in Hawai`i and Florida; early stage invasive in Puerto Rico. Photo by Javier Alexandro via Flickr

In the future, non-native trees will play an even bigger role. Since tree invasions on the continent are expanding at ~500,000 acres (202,343 ha) per year, it is not surprising that non-native species’ saplings provide 19% of the total carbon storage for that size of trees in the lower 48 states (Lugo et al.).

Forming a More Complete Picture: Biodiversity, Disturbance, and Combining Data.

The USFS RPA report has a chapter on biodiversity. However, the chapter does not discuss historic or future diversity of tree species within biomes, nor the genetic diversity within tree species.

Treatment of Invasive Species

The USFS 2020 RPA report is the first to include a chapter on disturbance, including invasive species. I applaud its inclusion while wondering why they have included it only now? Why is the coverage so minimal? I think these lapses undercut the report’s purpose. The RPA is supposed to inform decision-makers and stakeholders about the status, trends, and projected future of renewable natural resources and related economic sectors for which USFS has management responsibilities. These include: forests, forest products, rangelands, water, biological diversity, and outdoor recreation. The report also has not met its claim to “capitalize on” areas where the USFS has research capacity. One excuse might be that several important publications have appeared after the cut-off date for the assessment (2020). Still, the report’s authors cite some of the evaluations that were in preparation as of 2020, e.g., Poland et al.

I suggest also that it would be helpful to integrate data from other agencies, especially the invasive species database compiled by the U.S. Geological Survey, into the RPA. For example, the USGS lists just over 4,000 non-native plant species in the continental U.S. (defined as the lower 48 plus Alaska). On Hawai`i, the USGS lists 530 non-native plant species as widespread. Caveat: many of the species included in these lists probably coexist with the native plants and make up minor components of the plant community.

Specifically: Invading Plants

The USFS RPA report gives much more attention to invasive plants than non-native insects and pathogens. The report relies on the findings of Oswalt et al., who based their data on forested plots sampled by the Forest Inventory and Analysis (FIA) program. (The RPA also reports on invasive plants detected on rangelands, primarily grasslands.) Oswalt et al. found that 39% of FIA plots nationwide contained at least one plant species that the FIA protocol considers to be invasive and monitors. The highest intensity of plant invasions is in Hawai`i – 70% of the plots are invaded. The second-greatest intensity is in the eastern forests: 46%. However, the map showing which plots were inventoried for invasive plants makes clear how incomplete these data are – a situation I had not realized previously.

I appreciate that the USFS RPA report mentions that propagule pressure is an important factor in plant invasions. This aspect has often been left out in past analyses. I also appreciate the statement that international trade in plants for ornamental horticulture will probably lead to additional introductions in the future. Third, I concur with the report’s conclusions that once forest land is invaded, it is unlikely to become un-invaded. Invasive plant management in forests often results in one non-native species being replaced by another. In sum, the report envisions a future in which plant invasion rates are likely to increase on forest land.

If you wish to learn more about invasive plant presence and impacts, see the discussion of invasive plants in Poland et al., my blogs based on the work by Doug Tallamy, and several other of my blogs compiled under the category “invasive plants” on this website.

I believe all sources expect that the area invaded by non-native plant species, and the intensity of existing invasions, will increase in the future.

The USFS RPA links these invasions to expansion of the “wildland-urban interface” (“WUI”). These areas increased rapidly before 2010. At that time, they occupied 14% of forest land. The report published in 2023 did not assess their future expansion over the period 2020 to 2070. However, it did project increased fragmentation in many regions, especially in the RPA Western and Southeastern regions. Since “fragmentation” is very similar to wildland-urban interfaces, the report seems implicitly to project more widespread plant invasions in the future.

plant invasions facilitated by fragmentation; northern Virginia; photo by F.T. Campbell

Specifically: Insects and Pathogens

The USFS RPA report on insects and pathogens is brief and contains puzzling errors and gaps. It says that the tree canopy area affected by both native and non-native mortality-causing agents has been consistently large over the three most recent five-year FIA assessment periods. It notes that individual insects or diseases have extirpated entire tree species or genera and fundamentally altered forests across broad regions. Examples cited are chestnut blight and emerald ash borer.

The USFS RPA report warns that pest-related mortality might be underreported in the South, masked by more intense management cycles and higher rates of tree growth and decay. On the other hand, the report asserts that pest-related mortality is probably overrepresented in the Northern Region in the 2002 – 2006 period because surveyors drew polygons to encompass large areas affected by EAB and balsam woolly adelgid (Adelges piceae) infestations. The latter puzzles me; I think it is probably an error, and should have referred to hemlock woolly adegid, A. tsugae. Documented mortality has generally been much more widespread from insects than diseases, e.g., bark beetles, including several native ones, across all regions and over time, especially in the West – where the most significant morality agents are several native beetles. The USFS RPA report mentions that the Northern Region has been particularly affected by non-native pests, including EAB, HWA, BWA, beech bark disease, and oak wilt. It mentions that Hawai`i has also suffered substantial impacts from rapid ʻōhiʻa death.  

Defoliating insects have affected relatively consistent area over time. This area usually equaled or exceeded the area affected by the mortality agents. Principal non-native defoliators in the Northern Region have been the spongy moth (Lymantria dispar); larch casebearer (Coleophora laricella); and winter moth (Operophtera brumata). In the South they list the spongy moth.

More disturbing to me is the USFS RPA report’s conclusion that the future impact of forest insects is highly uncertain. The authorsblame the complexity of interactions among changing climate, those changes’ effects on insect and tree species’ distributions, and overall forest health. Also, they name uncertainty about which new non-native species will be introduced to the United States. I appreciate the report’s avoidance of blanket statements regarding the effects of climate change. However, other studies – e.g., Poland et al. – have incorporated these complexities while still offering conclusions about a number of currently established non-native pests. Finally, I am particularly dismayed that the USFS RPA does not provide analysis of any forest pathogens beyond the single mention of a few.

I am confused as to why the USFS RPA report makes no mention of Project CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk of Extirpation). This is a multi-partner effort to prioritize U.S. tree species for conservation actions based on invasive pests’ threats and the trees’ ability to adapt to them. Several USFS units participated, including the Southern Research Station, the Eastern Forest Environmental Threat Assessment Center, and the Forest Health Protection program. The findings were published in 2019. See here. Lead scientist Kevin Potter was one of the authors of the RPA’s chapter on disturbance.

redbay (Persea borbonia) trees in Georgia killed by laurel wilt; photo by Scott Cameron. Redbay is ranked by Project CAPTURE as 5th most severely at risk due to a non-native pest

“Project CAPTURE” provided useful summaries of non-native pests’ impacts, including the facts that

  •  54% of the tree species on the continent are infested by one or more non-native insect or pathogen;
  • nearly 70% of the host/agent combinations involve angiosperm (broadleaf) species, 30% gymnosperms (e.g., conifers). When considering only non-native pests, pests attacking angiosperms had greater average severity.
  • Disease impacts are more severe, on average, than insect pests. Wood-borers are more damaging than other types of insect pests.
  • Non-native agents have, on average, considerably more severe impacts than native pests.

Project CAPTURE also ranked priority tree species based on the threat from non-native pests  (Potter et al., 2019). Tree families at the highest risk to non-native pests are: a) Fagaceae (oaks, tanoaks, chestnuts, beech), b) Sapindaceae (soapberry family; includes maples, Aesculus (buckeye, horsechestnut); c) in some cases, Pinaceae (pines); d) Salicaceae (willows, poplars, aspens); e) Ulmaceae (elms) and f) Oleaceae (includes Fraxinus). I believe this information should have been included in the Resources Planning Act report in order to insure that decision-makers consider these threats in guiding USFS programs.

I also wish the USFS RPA had at least prominently referred readers to Poland et al. Among that study’s key points are:

  • Invasive (non-native) insects and diseases can reduce productivity of desired species, interactions at other trophic levels, and watershed hydrology. They also impose enormously high management costs.
  • Some non-native pests potentially threaten the survival of entire tree genera, not just individual species, e.g., emerald ash borer and Dutch elm disease.  I add white pine blister rust and laurel wilt.
  • Emerald ash borer and hemlock woolly adelgid are listed as among the most significant threats to forests in the Eastern US.
  • White pine blister rust and hemlock woolly adelgid are described as so profoundly affecting ecosystem structure and function as to cause an irreversible change of ecological state.
  • Restoration of severely impacted forests requires first, controlling the non-native pest, then identifying and enriching – through selection and breeding – levels of genetic resistance in native populations of the impacted host tree. Programs of varying length and success target five-needle pines killed by Cronartium ribicola; Port-Orford cedar killed by the oomycete Phytophthora lateralis; chestnut blight; Dutch elm disease; butternut canker (causal agent Ophiognomonia clavigignenti juglandacearum), emerald ash borer; and hemlock woolly adelgid.
  • Climate change will almost certainly lead to changes in the distribution of invasive species, as their populations respond to increased variability and longer-term changes in temperature, moisture, and biotic interactions. Predicting how particular species will respond is difficult but essential to developing effective prevention, control, and restoration strategies.

Poland et al. summarizes major bioinvaders in several regions. Each region except Hawai`i (!!) includes tree-killing insects or pathogens.

It is easier to understand the RPA report’s not mentioning priority-setting efforts by two other entities, the Morton Arboretum and International Union for the Conservation of Nature (IUCN). These studies were published in 2021 and their lead entities were not the Forest Service – although the USFS helped to fund the U.S. portion of the studies.

The Morton Arboretum led in the analysis of U.S. tree species. It published studies evaluating the status of tree species belonging to nine genera, considering all threats. The Morton study ranked as of conservation concern one third of native pine species; 31% of native oak species; significant proportion of species in the Lauraceae. The report on American beech — the only North American species in the genus Fagus – made no mention of beech leaf disease – despite it being a major concern in Ohio – only two states away from the location of the Morton Arboretum near Chicago.

valley oak (Quercus lobata) in Alameda Co, California; photo by Belinda Lo via Flickr

Most of the species listed by the Morton Arboretum are of conservation concern because of their small populations and restricted ranges. The report’s coverage of native pests is inconsistent, spotty, and sometimes focuses on odd examples.

Tree Species’ Regeneration

Too late for consideration by the authors of the USFS RPA report come new studies by Potter and Riitters that evaluate species at risk due to poor regeneration. This effort evaluated 280 forest tree species native to the continental United States – two-thirds of the species evaluated in the Kevin Potter’s earlier analysis of pest impacts.

The results of Potter and Riitters 2023 only partially matched those of the IUCN/Morton studies. The Morton study did not mention three genera with the highest proportions of poorly reproducing species according to Potter and Riitters: Platanus, Nyssa, and Juniperus. Potter, Morton, and the IUCN largely agree on the proportion of Pinus species at risk. Potter et al. 2023 found about 11% of oak species to be reproducing poorly, while Morton designated a third of 91 oak species to be of conservation concern.

I believe Potter and Riitters and the Morton study agree that the Southeast and California are geographic hot spots of tree species at risk.

Potter and Riiters found that several species with wide distributions might be at risk because they are reproducing at inadequate rates. Three of these exhibit poor reproduction across their full range: Populus deltoids (eastern cottonwood), Platanus occidentalis (American sycamore), and ponderosa pine(Pinus ponderosa). Four more species are reported to exhibit poor reproduction rates in all seed zones in which they grow (the difference from the former group is not explained). These are two Juniperus, Pinus pungens, and Quercus lobata. As I point out in my earlier blog, valley oak is also under attack by the Mediterranean oak borer.

SOURCES

Fei, S., R.S. Morin, C.M. Oswalt, and A.M. 2019. Biomass losses resulting from insect and disease invasions in United States forests. Proceedings of the National Academy of Sciences. Vol. 116, No. 35. August 27, 2019.

Lugo, A.E., J.E. Smith, K.M. Potter, H. Marcano Vega, and C.M. Kurtz. 2022. The Contribution of Nonnative Tree Species to the Structure and Composition of Forests in the Conterminous United States in Comparison with Tropical Islands in the Pacific and Caribbean. USDA USFS General Technical Report IITF-54

Poland, T.M., T. Patel-Weynand, D.M. Finch, C.F. Miniat, D.C. Hayes, V.M. Lopez, eds. 2021. Invasive Species in Forests and Rangelands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector. Springer Verlag. Available gratis at https://link.springer.com/book/10.1007/978-3-030-45367-1

Potter, K.M., M.E. Escanferla, R.M. Jetton, G. Man, and B.S. Crane. 2019. Prioritizing the conservation needs of United States tree species: Evaluating vulnerability to forest insect and disease threats. Global Ecology and Conservation.

Potter, K.M. and Riitters, K. 2023. A National Multi-Scale Assessment of Regeneration Deficit as an Indicator of Potential Risk of Forest Genetic Variation Loss. Forests 2022, 13, 19. https://doi.org/10.3390/f13010019

United States Department of Agriculture Forest Service. 2023. Future of America’s Forests and Rangelands: The Forest Service 2020 Resource Planning Act Assessment. GTR-WO-102 July 2023

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Invasive Tree Species in the U.S. Caribbean: New Attention!

African Tulip Tree (Spathodea campanulata) on Puerto Rico; photo by Joe Schlabotnik via Flickr

While it is widely accepted that tropical island ecosystems are especially vulnerable to invasions, there has been little attention to terrestrial bioinvaders in the Caribbean; there has been more attention to marine bioinvaders such as lionfish. I am glad that is starting to change. Here I review a new study by Potter et al. (full citation at end of this blog), supplemented by information from other recent studies, especially Poland et al.

Potter et al. used USFS Forest Inventory and Analysis (FIA) survey data to examine regeneration rates by non-native tree species introduced to the continental United States, Hawai`i, and Puerto Rico. I rejoice that they have included these tropical islands, often left out of studies. They are part of the United States and are centers of plant endemism!

Potter et al. sought to learn which individual non-indigenous tree species are regenerating sufficiently to raise concern that they will cause significant ecological and economic damage in the future. That is, those they consider highly invasive. They defined such species as those for which at least 75% of stems of that species detected by FIA surveys are in their small tree categories – saplings or seedlings. They concluded that these species are successfully reproducing after reaching the canopy so they might be more likely to alter forest ecosystem functions and services. They labelled species exhibiting 60 – 75% of stems in the “small” categories as moderately invasive.

The authors recognize that many factors might affect tree species’ regeneration success, especially at the stand level. They assert that successful reproduction reflects a suite of factors such as propagule pressure, time since invasion, and ability of a species to adapt to different environments.

As I reported in an earlier blog, link 17% of the total flora of the islands of the Caribbean archipelago – including but not limited to Puerto Rico – are not native (Potter et al.). In Puerto Rico, two-thirds of forests comprise novel tree assemblages. The FIA records the presence of 57 non-native tree species on Puerto Rico. Potter et al. identified 17 non-native tree species as highly invasive, 16 as potentially highly invasive, and two as moderately invasive. That is, 33 of 57 nonnative tree species, or 58% of those species tallied by FIA surveyors, are actual or potential high-impact bioinvaders. While on the continent only seven non-native tree species occurred on at least 2% of FIA plots across the ecoregions in which they were inventoried, on Puerto Rico 21 species occurred on at least 2% of the FIA plots (38%). They could not assess the invasiveness of the eight species that occurred only as small stems on a couple of survey plots. These species might be in the early stages of widespread invasion, or they might never be able to reproduce & spread.

The high invasion density probably reflects Puerto Rico’s small size (5,325 mi² / 1,379,000 ha); 500 years of exposure to colonial settlement and global trade; and wide-scale abandonment of agricultural land since the middle of the 20th Century

Naming the invaders

The most widespread and common of the highly invasive non-native tree species are river tamarind (Leucaena leucocephala), on 12.6% of 294 forested plots; algarroba (Prosopis pallida) on 10.9%; and African tuliptree (Spathodea campanulata)on 6.1%. Potter et al. attribute the prevalence of some species largely to land-use history, i.e., reforestation of formerly agricultural lands. In addition, some of the moderately to highly invasive species currently provide timber and non-timber forest products, including S. campanulata, L. leucocephala, Syzgium jambos (rose apple) and Mangifera indica (mango).

Potter et al. contrast the threat posed by Spathodea campanulata with that posed by Syzgium jambo. The latteris shade tolerant and can form dense, monotypic stands under closed canopies. Because it can reproduce under its own canopy, it might be able to remain indefinitely in forests unless it is managed. In contrast S. campanulata commonly colonizes abandoned pastures. Since it is shade intolerant, it might decline in the future as other species overtop it. Meanwhile, they suggest, S. campanulata might provide habitat appropriate for the colonization of native tree species.

Second-growth forest in Caribbean National Forest “El Yunque”

Poland et al. say the threat from Syzgium jambos might be reduced by the accidentally introduced rust fungus Puccinia psidii (= Austropuccinia psidii), which has been killing rose apple in Puerto Rico. In Hawai`i, the same fungus has devastated rose apple in wetter areas.

Potter et al. note that stands dominated by L. leucocephala and Prosopis pallida in the island’s dry forests are sometimes arrested by chronic disturbance – presumably fire. However, they do not report whether other species – native or introduced – tend to replace these two after disturbance. The authors also say that areas with highly eroded soils might persist in a degraded state without trees. The prospect of longlasting bare soil or trashy scrub is certainly is alarming.

Potter et al. warn that the FIA’s sampling protocol is not designed to detect species that are early in the invasion process. However, they do advise targetting eradication or control efforts on the eight species that occurred only as small stems on a couple of survey plots. While their invasiveness cannot yet be determined, these species might be more easily managed because presumably few trees have yet reached reproductive age. They single out Schinus terebinthifolius (Brazilian pepper), since it is already recognized as moderately invasive in Hawai`i. I add that this species is seriously invasive in nearby peninsular Florida and here! APHIS recently approved release of a biocontrol insect in Florida targetting Brazilian pepper. It might easily reach nearby Puerto Rico or other islands in the Caribbean. I am not aware of native plant species in the Caribbean region that might be damaged by the biocontrol agent. However, two native Hawaiian shrubs might be harmed if/when this thrips reaches the Hawaiian Islands. Contact me for specifics, or read the accompanying blog about Potter et al. findings in Hawai`i.

Poland et al. looked at the full taxonomic range of possible bioinvaders in forest and grassland ecosystems. The Caribbean islands receive very brief coverage in the chapter on the Southeast (see Regional Summary Appendices). This chapter contains a statement that I consider unfortunate: “Introduction of species has enriched the flora and fauna of Puerto Rico and the Virgin Islands.” The chapter’s authors assert that many of the naturalized species are restoring forest conditions on formerly agricultural lands. They say that these islands’ experience demonstrates that introduced and native species can cohabitate and complement one another. I ask – but in what kind of forest? These forests, are novel communities that bear little relationship to pre-colonial biodiversity of the islands. Was not this chapter the right place to note that loss? Forests are more than CO2 sinks.

I also regret that the chapter does not mention that the Continental United States can be the source of potentially invasive species (see several examples below).

Mealybug-infested cactus at Cabo Rojo National Wildlife Refuge, Puerto Rico. Photo by Yorelyz Rodríguez-Reyes

The chapter does concede that some introduced species are causing ecological damage now. See Table A8.1. Some of these troublesome introduced species are insects:

  • the South American Harrisia cactus mealybug (Hypogeococcus pungens) is killing columnar cacti in the islands’ dry forests. The chapter discusses impacts on several cactus species and control efforts, especially the search for biocontrol agents.
  • the agave snout weevil (Scyphophorus acupunctatus), native to the U.S. Southwest and Mexico , is threatening the endemic and endangered century plant (Agave eggersiana) in St. Croix & Puerto Rico.
  • Tabebuia thrips (Holopothrips tabebuia) is of unknown origin. It is widespread around mainland Puerto Rico. Its impacts so far are primarily esthetic, but it does apparently feed on both native and introduced tree species in the Tabebuia and Crescentia genera.

The Caribbean discussion also devotes welcome attention to belowground invaders, i.e., earthworms. At least one species has been found in relatively undisturbed cloud forests, so it is apparently widespread. Little is known about its impact; more generally, introduced earthworms can increase soil carbon dioxide (CO2) emissions as through speeded-up litter decomposition and soil respiration.

A factsheet issued by the British forestry research arm DEFRA reports that the pine tortoise scale Toumeyella parvicornis has caused the death of 95% of the native Caicos pine (Pinus caribaea var. bahamensis) forests in the Turks and Caicos Islands (a UK Overseas Territory). The scale is native to North America. It has recently been introduced to Italy as well as to Puerto Rico, and the Turks and Caicos Islands.

SOURCES

Lugo, A.E., J.E. Smith, K.M. Potter, H. Marcano Vega, C.M. Kurtz. 2022. The Contribution of Non-native Tree Species to the Structure & Composition of Forests in the Conterminous United States in Comparison with Tropical Islands in the Pacific & Caribbean. USFS International Institute of Tropical Forestry General Technical Report IITF-54.

Poland, T.M., Patel-Weynand, T., Finch, D., Miniat, C. F., and Lopez, V. (Eds) (2019), Invasive Species in Forests and Grasslands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector. Especially the Appendix on the Southeast and Caribbean. Springer Verlag. Available gratis at https://link.springer.com/book/10.1007/978-3-030-45367-1

Potter K.M., Riitters, K.H. & Guo. Q. 2022. Non-nativetree regeneration indicates regional & national risks from current invasions. Frontiers in Forests & Global Change Front. For. Glob. Change 5:966407. doi: 10.3389/ffgc.2022.966407

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Sobering News: Invasive Grasses, Trees, and Killer Pests in Hawai`i

At CISP, our hearts go out to all those affected by the terrible August fires on Maui. May the departed rest in peace. May the living find comfort and all that is needed for recovery.

Fire and Invasive Grasses

A fire in non-native grasses on Maui in 2009; photo by Forrest and Kim Starr

Major U.S. and international media continue to detail the fires’ devastation, especially in Lahaina. As time has passed, more news has highlighted the role that the widespread presence of introduced, fire-prone grasses played in the rapid growth and spread of Maui’s fires.  

For example, The Washington Post devoted seven paragraphs in one story to the issue of grasses. The story quotes several experts: Alison Nugent, an associate atmospheric scientist at the University of Hawaii’s Water Resources Research Center; Jeff Masters, a meteorologist for Yale Climate Connections; and Clay Trauernicht, a fire researcher at the University of Hawaii.

These and others have been widely quoted in the many recent articles. I am glad that they – and the media – are making clear that climate change is not the sole factor causing damaging wildfires. It is clear that Maui’s recent weather patterns – including the high-velocity winds and drought – have been within the range of normal climate patterns. Fluctuations in the Pacific’s weather have also been normal, especially under the influence of the current El Niño.

The dangers caused by Hawai’i’s fire-prone grasses are also clear – and have been for years. Experts have identified policy weaknesses at the county and state level. Also, they have specified changes to land management that could better prevent or mitigate wildfires. There has been far too little action.

On the other hand, there are hopeful signs.

endangered ‘akikiki photo by Carter Atkinson, USGS

The Hawai’i Wildfire Management Organization, a nonprofit, is educating and engaging communities state-wide. Elizabeth Pickett, a Co-Executive Director, presented an overview of wildfire at the Hawai’i Invasive Species Awareness Month in February 2023. The Big Island Invasive Species Committee has successfully eradicated two species of pampas grass on Hawai’i Island – after 13 years’ work. A native species has been planted where pampas formerly grew.

Another Post article reported on efforts by staff and fire departments to protect the Maui Bird Conservation Center, which houses critically endangered Hawaiian birds found nowhere else on Earth, including some currently extinct in the wild. As I have blogged previously, the palila, kiwikiu, ‘akikiki, ‘alalā [Hawaiian crow; extinct in the wild] and other birds are dying from avian malaria, carried by nonnative mosquitoes.  The Center on Maui and another on the Big Island are run by the San Diego Zoo Wildlife Alliance. Conservationists have completed field trials of a proposed mosquito suppression process for Maui and are seeking public comments for a similar program on Kaua’i. These programs represent groundbreaking and long-awaited progress on countering a principal threat to the survival of Hawai`i’s unique avifauna. Loss of the Center and its birds would have devastated post-suppression efforts to rebuild and restore bird populations in the wild.

The Post carried a second story about the effort to protect Hawai`i’s endangered birds – a full page of print, even longer – with many photos, on the web. The article mentions the “Birds, Not Mosquitoes” program and varying views about it. I rejoice that the dire situation for the Islands’ biodiversity is getting attention in the Nation’s capital. Again, see my earlier blog.

Plant Invasions in Hawaiian Forests

A team of scientists from the USDA Forest Service and Natural Resources Conservation Service, plus the Hawaii Division of Forestry and Wildlife, has carried out a new assessment of the extent of invasive plant species in forests on the Hawaiian Islands (Potter et al. 2023; full citation at end of blog).

The results of their analysis are – in their words – “sobering”. They portend “a more dire future for Hawai`i`s native forests.”

First, regarding the recent fires, Potter et al. found significantly higher cover by invasive grasses on Forest and Inventory Analysis (FIA) plots on Hawai‘i and Maui than on O‘ahu, Kaua‘i, and Lana‘i. Grass invasions were particularly high on the eastern coast of Maui – near Lahaina. Even so, the authors say their study’s methods resulted in a gross underestimate of areas invaded by fire-prone grasses. That is, most of Hawai’i’s xerophytic dry forests were converted to grasslands before the FIA program began. Therefore these grasslands are not included in FIA surveys.  

Psidium cattleyanum; photo by Forrest and Kim Starr

The extent of current invasions in wetter forests is already significant – but trends point to an even more worrying future.

  • Naturalized non-native plant taxa constitute half of the Hawaiian flora.
  • 56% of Hawaii’s 553,000 ha of forest land contained non-native tree species; about 39% of these forest lands are dominated by non-native tree species. Invasive plant species of particular concern were found in the understory of 27% of surveyed forest plots.
  • Across all islands, six of the ten most abundant species are non-native: Psidium cattleyanum, Schinus terebinthifolius, Leucaena leucocepahala, Ardisia elliptica, Psidium guajava, and Acacia confusa.
  • While less than one-third (29%) of large trees across the Islands are non-native, this proportion increases to about two-thirds of saplings (63%) and seedlings (66%). Potter et al. focus on the likelihood that plant succession will result in transformation of these forests’ canopies from native tree species to non-native species.
  • 75% of forests in lower-elevation areas of all islands are already dominated by non-native tree species.  “Only” 31% of higher-elevation forests are so dominated. These montane forests have been viewed as refugia for native species, but all are invaded to some extent – and likely to become more degraded.
  • Potter et al. say the high elevation forests might be more resistant to domination by non-natives. Such a result would be counter to well-documented experience, though. Even the authors report that the montane rainforests and mesophytic forests of O‘ahu and Kaua‘i are heavily invaded by non-native tree species. Such species constitute 86% or more of large trees, saplings, and seedlings in mesophytic forests; 45% of large trees and 66% of seedlings in their montane rainforests.
  • The most abundant tree species in Hawai`i is the invasive species Psidium cattleyanum (strawberry guava). It was recorded on 88, or37%, of 238 FIA plots. There are nearly twice as many P. cattleyanum saplings as Hawai`i’s most widespread native species, ‘ohi’a lehua (Metrosideros polymorpha).
  • Widescale replacement of native trees by non-native species is likely. Several factors favor these changes: 1) tree disease – rapid ‘ohi’a death has had drastic impacts on ‘ohi’a populations on several islands; 2) invasions by forbs and grasses; 3) soil damage and other disturbances caused by invasive ungulates; and 4) climate change. If succession conforms to these trends, non-native tree species could eventually constitute 75% or more of the forest tree stems and basal area on all islands and across forest types and elevations. 

Loss of Hawai’i’s native tree species would be disastrous for biodiversity at the global level. More than 95% of native Hawaiian tree species are endemic, occurring nowhere else in the world.

The authors analyzed plant presence data from 238 FIA plots. Plots spanned the state’s various climates, soils, elevations, gradients, ownership, and management. However, access issues precluded inclusion of forests from several islands: Moloka‘i, Kaho’olawe, and Ni‘ihau. I know that Moloka‘i, at least, has a protected forest reserve (a Nature Conservancy property) at the island’s highest elevations.

Protecting Native Trees

Federal, state, and private landowners have carried out numerous actions to protect native forests. These efforts might be having some success. For example, forests on public lands, in conservation reserves, or in areas fenced to exclude ungulates were less impacted by non-native plants than unfenced plots, on average. However, the authors could not determine how much of this difference was the result of management or because protections were established in forests with the lowest presence of IAS species. Fencing did not prevent invasions by forbs and grasses – possibly because they are so widespread that seed sources are everywhere.

Hawaii’s two National parks (Hawai`i Volcanoes and Haleakala) have made major efforts to control invasive plants. Hawai`i Volcanoes, on the Big Island, began its efforts in the 1980s; Haleakala (on Maui) more recently. This might be one explanation for the fact that a smaller proportion of the forests on these two islands have been invaded. These efforts have not fully protected the parks, however. Low elevation native rainforests now have a high presence of non-native shrubs. Such forests on Hawai`i Island also have significant invasions by non-native woody vines, forbs and grasses.

More discouraging, intensive efforts have not returned lowland wet forest stands to a native-dominated state. Native tree species are not regenerating—even where there is plentiful seed from native canopy trees and managers have repeatedly removed competing non-native understory plants.

Potter et al. conclude that other approaches will be needed. They suggest deliberate planting of native and non-invasive non-native species or creation of small artificial gaps that might facilitate recovery of native tree species. In montane forests on Hawai`i and Maui, where native tree seedlings account for more than 70% of all tree seedlings, they propose enhancing early detection/rapid response efforts targetting invasive forbs. This would include both National parks.Certainly Haleakala National Park has this priority in mind. It launched a serious effort to try to eradicate Miconia calvescens when this tree first was detected.

Lloyd Loope, much-mourned scientist with US Geological Survey, attacking Miconia on Maui

Potter et al. note the challenge of managing remnant xerophytic dry forests, where natural regeneration of native plants has been strongly limited by invasive grasses; loss of native pollinators and seed dispersers; and the increasing frequency and intensity of droughts. They note that expanded management efforts must be implemented for decades, or longer, to be successful.

Native Trees at Risk to Nonnative Insects

Beyond the scope of the Potter et al. study is the fact that at least two dry forest endemic trees have faced their own threats from non-native insects.

The Erythrina gall wasp, Quadrastichus erythrinae, appeared in Hawai`i in 2005; it originates in east Africa. It attacks the endemic tree, wiliwili, Erythrina sandwicensis.  I believe a biocontrol agent, Eurytoma erythrinae, first released in 2008, has effectively protected the wiliwili tree, lessening this threat.

The Myoporum thrips, Klambothrips myopori, from Tasmania, was detected on the Big Island in 2009. It threatens a second native tree. Naio, (Myoporum sandwicense), grows in dry forests, lowlands, upland shrublands, and mesic and wet forest habitats from sea level to 3000 m. The loss of this species would be both a signifcant loss of native biodiversity and a structural loss to native forest habitats. The thrips continues to spread; a decade after the first detection, it was found on the leeward (dry) side of Hawai`i Island with rising levels of infestation and tree dieback.

Rhus sandwicensis on Maui; photo by Forrest and Kim Starr

Two native shrubs, Hawaiian sumac Rhus sandwicensis and Dodonea viscosa, might be at risk from a biocontrol agent in the future. APHIS has approved a biocontrol for the highly invasive Brazilian pepper, Schinus terebinthifolia. Brazilian pepper is the second-most abundant non-native tree species in the State. It was found on 28 of 238 (12%) FIA plots. However, the APHIS-approved biocontrol agent is a thrips—Pseudophilothrips ichini. It is known to attack both of these two native Hawaiian shrubs. The APHIS approval allowed release of the thrips only on the mainland US. However, many insects have been introduced unintentionally from the mainland to Hawai`i. Furthermore, Hawaiian authorities were reported to be considering deliberate introduction of P. ichini to control peppertree on the Islands.

In Conclusion

In conclusion, Potter et al. found that most Hawaiian forests are now hybrid communities of native and non-native species; indeed, a large fraction are novel forests dominated by non-native trees. Business-as-usual management will probably mean that the hybrid forests – and probably those in which the canopy is currently dominated by native species—will follow successional trajectories to novel, non-native- dominated woodlands. This likelihood results in a more dire future for native plants in Hawaiian forests than has been previously described.

Potter at al. hope that their findings can guide research and conservation on other islands, especially those in the Pacific. However, Pacific islands already have the most naturalized species globally for their size—despite what was originally considered their protective geographic isolation.

SOURCE

Potter, K.M., C. Giardina, R.F. Hughes, S. Cordell, O. Kuegler, A. Koch, E. Yuen. 2023. How invaded are Hawaiian forests? Non-native understory tree dominance signals potential canopy replacement. Landsc Ecol  https://doi.org/10.1007/s10980-023-01662-6

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Tree Regeneration Rates: A Tool for Prioritizing Tree Conservation Efforts

Ponderosa pine, Coconico National Forest; photograph by Brady Smith, USFS

Have you noticed, as I have, a spurt of interest in conservation of trees? I can rejoice that more people now focus on this!!!!

I have blogged previously about international and national efforts to determine not only native species deserving conservation priority – by the Morton Arboretum and IUCN but also species most threatened by non-native pests. I have also reported on growing attention to breeding tree resistance to non-native pests.

Some scientists are now focusing on species’ regeneration as a way to understand the probable future of both native and introduced species. I hope that scientists will integrate these new data with existing information on the impacts of invasive non-tree plants and tree-killing introduced pests. We need such a comprehensive picture. That will be a challenge!

Also, I hope attempts to set conservation priorities will influence decisions by governmental and non-governmental funders – and those who influence them! So far, I see little evidence that these key players are paying attention. Some Forest Service scientists and academics are pushing for expanded resistance-breeding efforts. Others are writing sophisticated analyses of non-native pests’ ecosystem impacts. But is the USDA leadership supporting stronger pest-prevention measures? Or funding for research on restoration of species? Are conservation NGOs addressing introduced forest pests?

Here, I summarize new work by Kevin Potter and his colleagues, published in two papers (full references at the end of this blog). After reading my summary, I’d like to know: What do you think? Do you agree with the focus on individual species’ regeneration to set conservation and control priorities? Do you agree with the priority species and geographic regions they suggest?? How should we resolve inconsistencies compared to the priorities suggested by the IUCN and Morton Arboretum? If you do agree, how would you suggest we move forward? If not, what approach do you think would be more useful?

A New Approach to Evaluating Species at Risk

Potter and Riitters (2022) point out that a species’ successful regeneration is key to its population’s future genetic diversity. That, in turn, determines the organisms’ ability to adapt to environmental stress and change. The latter includes, but is not limited to, climate change. Because trees are immobile and long-lived, their populations probably require substantially more genetic variation than those of other kinds of plants.

Potter and colleagues (both articles) used FIA survey data to examine regeneration rates by both tree species native to the continental United States (= CONUS) and non-native tree species introduced to CONUS, Hawai`i, or Puerto Rico. I rejoice that they have included these tropical islands, which are part of the United States and are centers of plant endemism. (Two other blogs provide details on their findings in Hawai`i and Puerto Rico.

Native Trees at Risk: Focus on Poor Regeneration

For CONUS, Potter and Riitters (2022) asked whether 280 native forest tree species are regenerating at sustainable levels, both across their full ranges and in regional portions of their ranges, defined by provisional seed zones (an area within which plant materials are assumed to be adapted). Tree species for which FIA surveys placed 75% of the stems in the sapling or seedling classes are determined to be regenerating at sustainable levels. Tree species exhibiting lower proportions of their stems in these “small tree” classes are said to be failing to regenerate adequately.

Potter and Riitters (2022) found that 46 of the 280 native tree species (16.4%) might be at risk of losing important levels of genetic variation (see the list of species in Table 2 of the article). These included high proportions of species evaluated in the following genera: two of three Platanus species; two of four Nyssa species; about 40% of Juniperus and Pinus; and five of 46 Quercus species (10.9%).

[Many areas of the eastern forest, especially in the Mid-Atlantic region, are reported by Stout, Hille, and Royo (2023) to be have insufficient advance regeneration to replace canopy trees.]

Some species appear to be headed toward outright extinction, not only loss of genetic diversity. These include four relatively rare species in California: Pinus muricata, Platanus racemosa, Pseudotsuga macrocarpa, and Sequioadendron giganteum. No seedlings or saplings are recorded on the plots on which they occurred. I note that Platanus racemosa in southern California is being attacked and killed by the Fusarium dieback vectored by the polygamous and Kuroshio shot hole borers.

Platanus racemosa riddled by invasive shot hole borer; photo by Beatriz Nobua-Behrmann, University of California Cooperative Extension

I find it alarming that a few of the possibly at-risk species have extremely wide distributions. These are Populus deltoides (eastern cottonwood), Platanus occidentalis (American sycamore), and ponderosa pine (Pinus ponderosa). Another group of species are classified as at potential risk in all their seed zones: Juniperus californica, Juniperus osteosperma, Pinus pungens, and Quercus lobata (valley oak). I note that valley oak is also under attack by the recently introduced Mediterranean oak borer. Its vulnerability is exacerbated by its relatively small range.

Potter and Riitters (2022) found distinct geographic hot spots: 15 at-risk species occur primarily in the Southeast and 14 species are in California; both represent nearly a third of the at-risk species.

In general, high rates of regeneration failure are seen in the West. Nine at-risk species (19.6% of the 46) grow in the Southwest, eight in Texas (17.4%), and four in the Rocky Mountains (8.7%). However, the Northeast and Midwest are not immune. Seven species from the former and six from the latter are also regenerating poorly. Considering pines alone, seven of 14 at-risk speciesare in the West and five in the Southeast.

Seed Zones: a Proxy for Local Genotypes

As I noted at the beginning, Potter and Riitters (2022) used USDA Forest Service provisional seed zones as a proxy for areas in which a species is presumably locally adapted. In addition to the 46 species considered failing to regenerate adequately throughout their entire ranges, Potter and Riitters (2022) determined that another 39 species are at potential risk of losing locally adapted genotypes. That is, their regeneration levels fell below the threshold in at least half of the seed zones in which they occurred. These potentially at-risk species are in the same taxonomic groups: 13 pines (33.3% of the 39 species in the category), six junipers (15.3%), and three oaks (7.7 %). These, too are concentrated in the Southeast and California: 40% are in the former — including both bald-cypress species — and 30.8% are in California. Another seven species (17.9% of the 39) are in Texas. The Midwest is home to seven species, the Northeast and Southwest each has five species (12.8%), and the Rocky Mountain region has three species (7.7%).

Bald-cypress; photo by Kej605 via WikiMedia

The seed zones with the largest numbers of species regenerating poorly are in the East, specifically the central Great Lakes region, western New York and Pennsylvania, along the Mid-Atlantic and New England coasts, and the coastal plain from southern South Carolina to eastern Texas. Potter and Riitters (2022) say these areas have such high numbers of at-risk species because they are home to so many tree species. I note [although Potter and Riitters (2022) do not] that these regions have also experienced severe levels of tree mortality due to the emerald ash borer (mature and young trees), beech leaf disease (primarily young trees), and laurel wilt disease (sub-canopy trees).

A different geographic pattern appears when considering the proportion — rather than the number — of species facing deficits in regeneration. In several Western regions, 60 – 100% of the tree species fell below the study’s threshold of 75% of recorded stems being in the sapling or seedling sizes. These seed zones are found particularly in parts of California, the Southwest, the Great Basin, and the Pacific Northwest. In none of the seed zones in the East are more than 50% of tree species in the category of potentially losing genetic variation. The implication is that while more species might be lost from parts of the East, the loss of fewer species in some Western seed zones could result in larger impacts on the composition, structure, and function of forest ecosystems there.

Potter and Riitters (2022) say that their approach has limitations because it relies on an assumption that a lack of smaller (i.e., younger) trees is an indication that a species has inadequate regeneration across all or part of its distribution and thus is vulnerable to losing genetic variation. They are not able to quantify directly the genetic variation within most forest tree species. In addition, the choice of 75% or fewer of all trees being seedlings or saplings threshold as the threshold is arbitrary. They believe these decisions are defensible.

Potter and Riitters (2022) hope that indicators of forest sustainability such as this can bridge the gap between scientists, forest managers, policy makers, and other stakeholders.

Further, the authors hope that this approach will help prioritize species most in need of: 1) monitoring for genetic diversity, 2) in situ conservation, and 3) ex situ propagule collections. In a future blog I will compare the species highlighted by Potter and Riitters (2022) to the earlier priority list developed by the IUCN and Morton Arboretum. Finally, the focus on regeneration levels could help scientists design representative sampling protocols for range-wide ex situ propagule collections for genetic diversity studies using molecular markers.

Applying This Analysis to Invasions by Non-native Trees

In a second study, Potter, Riitters, and Guo (full citation at end of this blog) flipped the focus: they used the same approach to quantify the degree of invasion by non-native trees in the U.S. I’ve blogged about this study, in general, here. Also see my separate blogs for its welcome application to Hawai`i and Puerto Rico.

Again, Potter, Riitters, and Guo hope their approach will assist in the crucial, difficult task of distinguishing between high-impact and less threatening non-native species. They warn, however, that the FIA survey procotol does not suit the needs of an early detection system.

Differentiating Invasive Tree Species’ Impacts

Potter, Riitters, and Guo note that thousands of non-native tree species have been planted around world to provide an extensive list of ecosystem services. Globally, 400 tree species have been recognized as naturalized (= consistently reproducing) or invasive (= spreading) in areas outside their native ranges. Contrary to some expectations, even relatively undisturbed forests are affected by invasive plants. In the continental United States, many fewer invasive plant species are trees than other forms/habits – shrubs, forbs, gramminoids. On the tropical islands, a much higher proportion of invasive plants are trees.

Lugo et al. (2022; full citation at end of this blog) find non-native tree species occupy a tiny fraction of the forest area of the continental United States [= CONUS], i.e., only 2.8% of the area, and only 0.4% of all tree species recorded in the FIA plots. However, these non-native tree species are widespread. They are found in 61% of forested ecosections in CONUS. Also, they are becoming more common in invaded sites. [Ecosections are divisions within 37 ecological provinces in the hierarchical framework developed by Cleland et al. (2007). There are 190 ecosections in U.S. forest biomes.]

Potter, Riitters, and Guo categorized those non-native tree species with at least 75% of stems detected by FIA surveys to be in sapling or seedling size as highly invasive. In other words, these species are successfully reproducing after reaching the canopy. So they might be more likely to alter forest functions and ecosystem services than those reproducing less robustly. They classified as species with 60 – 75% of recorded stems in these “small tree” categories as “moderately invasive.”

Potter, Riitters, and Guo suggest that control might more productively target the moderately invasive species in geographic regions where they have spread less so far – so presumably fewer seed-bearing mature specimens are present. They list as examples Picea abies, Pinus sylvestris, and Paulownia tomentosa.

In CONUS, FIA protocols specify reporting of 30 non-indigenous tree species.

 
Acer platanoides
Ailanthus altissima
Albizia julibrissin
Alnus glutinosa
Castanea mollissima
Casuarina lepidophloia
Cinnamomum camphora
Citrus sp.
Elaeagnus angustifolia
Eucalyptus globulus
Eucalyptus grandis
Ginko biloba
Melaleuca quinquenervia
Melia azedarach
Morus alba
Paulownia tomentosa
Picea abies
Pinus nigra
Pinus sylvestris
Populus alba
Prunus avium
Prunus persica
Salix alba
Salix sepulcralis
Sorbus aucuparia
Tamarix spp
Triadica sebifera
Ulmus pumila
Vernicia fordii

About half of these –16 species – qualified under the Potter, Riitters, and Guo criteria as highly invasive: Acer platanoides, Ailanthus altissima, Albizia julibrissin, Cinnamomum camphora, Elaegnus angustifolia, Melia azedarach, Melaleuca quinquenervia, Morus alba, Picea abies, Pinus nigra, Prunus avium, Salix alba, Salix sepulcralis, Triadica sebifera, Ulmus pumila, Vernicia fordii. An additional four taxa are ranked as potentially highly invasive: Tamarix; Eucalyptus grandis and E. globulus, Populus alba.

ring-billed gulls eating berries of Chinese tallowtree (Triadica sebifera); photo by TexasEagle via Flickr

I ask : Do YOU agree that these taxa are the most important to be tracking as potentially invasive in forests of the continental United States?

Potter, Riitters, and Guo distinguish between the most “common” and the most “widespread” invasive tree species – although they do not define the differences. Some of the most “common” or “widespread” species are not a surprise: Ailanthus altissima, Triadica sebifera (syn. Sapium sebiferum), and Acer platanoides. Ailanthus is categorized as highly invasive in 39 of 44 ecoregions in which it occurs. It is also notoriously difficult to manage. Triadica sebifera is classified as highly invasive in every one of the 20 ecoregions in which it occurs. It produces prolific seed crops that are widely dispersed by birds and water. It can invade both disturbed and undisturbed habitats. Some of the common or widespread species do surprise me: Ulmus pumila, Morus alba and Picea abies.

Most of the non-native tree species occur on only 2% of plots in the ecoregions in which they occur. However, some highly invasive trees exceed this level:  

Triadica sebifera is detected on 8.6% of plots on average across 20 ecoregions;

Ulmus pumila is detected on 3.7% of plots across 39 ecoregions;

Elaeagnus angustifolia is detected on 3.3% of plots in 13 ecoregions;

Melaleuca quinquenervia is detected on 2.7% of plots in 4 ecoregions.

A. altissima is detected on only 2% of plots in the 44 ecoregions. This is surprising to me. I see it everywhere in the Mid-Atlantic – and elsewhere!

[In USFS Region 9 (24 states in the Northeast and Midwest), FIA surveys in 2019 detected Ailanthus on only 3% of plots, Norway maple and Siberian elm each on only 1% of plots (Kurz 2023).]

Eastern U.S. forests are invaded at rates several times those in Western forests, both as a proportion of plots that are invaded and the diversity of plant growth forms. The probability of invasion is highest in Eastern forests that are relatively productive and located in fragmented landscapes that contain developed or agricultural land. Non-native invasive trees are most prevalent along the Gulf Coast and in Mid-Atlantic and Midwestern States. Highly invasive non-native trees are most diverse in the ecoregions of the Mid-Atlantic and Southeast. I note that these regions also rank high in numbers of native tree species determined by Potter et al.’s other study to be reproducing an unsustainable levels.

The study found that non-native trees are almost entirely absent from the Rocky Mountain States and Alaska. However, I have seen Ailanthus in riparian areas of Utah, Arizona, and New Mexico. While few non-native tree species are recorded from ecoregions along the Pacific Coast, those areas are heavily invaded by other types of plants. Lugo et al. say those shrubs and forbs are not interfering with forest regeneration. Do YOU agree?

BLM & USFS botanists removing Spanish broom from Rogue River Canyon; photo by Stacy Johnson, BLM

On tropical islands included in the study – Hawai`i and Puerto Rico – the situation is very different. Together, these islands’ tree canopy covers less than 0.5% that of the area in the lower 48. Hawai`i is recognized as a global hotspot of non-native species richness. Naturalized non-native plant taxa constitute about half of the Hawaiian flora. The US Forest Service tracks twice as many non-native tree species in Hawai`i (62) than over the entire continental U.S. plus Alaska.

Of these 62 species, Potter, Riitters, and Guo identified 26 tree species as either highly or moderately invasive, either already or potentially highly invasive, three as moderately invasive, seven as potentially moderately invasive. In general, the richness of non-native tree species is higher in lower-elevation ecoregions, especially the lowland/leeward dry and mesic forests on O’ahu and lowland wet and mesic forests of the Big Island. [The article makes a brief reference to the probable role of rapid ʻōhiʻa death opening the canopy of the mesic and wet forests, thereby facilitating plant invasions.] Most Hawaiian ecoregions, especially those on O’ahu and Hawai’i Island, had higher non-native tree species richness than even the most highly invaded ecoregions in the lower 48 states. Parts of O’ahu & Maui had the most non-native tree species classified as highly invasive.

The Caribbean archipelago – including but not limited to Puerto Rico – has a lower proportion of non-native plant species than Hawai’i — 17% of plant species are not native. However, their presence is even higher: two-thirds of Puerto Rico’s forests comprise novel tree assemblages. This is probably because Puerto Rico has half the land area of the Hawaiian archipelago and has been part of global trade networks for 500 years instead of 200. Potter and colleagues identified 17 non-native tree species as highly invasive, 16 as potentially highly invasive, and two as moderately invasive.

On the continent only seven of 30 non-native tree species occurr on at least 2% of FIA plots across the ecoregions in which they are inventoried. Hawai’i is stunningly different: 56 of 62 species occurr on at least 2% of plots across ecoregions on average; 24 species are present on at least 10% of plots on average. One species, Psidium cattleyanum, is present on nearly half of surveyed plots across 13 ecoregions! In Puerto Rico, 21 species occurred on at least 2% of the FIA plots.

Acacia confusa – highly invasive in dry forests of Hawai`i; photo by Forrest and Kim Starr

Potter, Riitters, and Guo could not assess the invasiveness of several species that occurred only as small stems in a couple of plots. There are 11 such species on Hawai`i, eight on Puerto Rico. These species might be in the early stages of widespread invasion, or they might never be able to reproduce and spread. Despite the uncertainty, the authors suggest that eradication or control efforts targetting these species might be more cost-effective since presumably few trees have reached reproductive age yet. In Puerto Rico, they single out Schinus terebinthifolius, since it is already recognized as moderately invasive in Hawai`i [I add – seriously invasive in nearby Florida!]. However, they also emphasize the threat from one of the widespread species, Syzgium jambos, because it is a shade-tolerant species that can form dense, monotypic stands under closed canopies

I have posted separate blogs providing more details on the invasive tree species in Hawai`i and Puerto Rico.

Limits of the FIA Dataset

As in the study of native species regeneration, Potter, Riitters, and Guo specify limits arising from use of the FIA dataset. Two seem particularly pertinent to evaluation of the situation on the tropical islands.

First, they cataloged only those non-native tree species chosen by the FIA program administrators to track in the three major regions. Again, I ask YOU whether you agree with the species being recorded. Should others species be included? Should some of these species be dropped?

Second, the survey protocol does not differentiate between sites with significantly different status and history. For example, non-native trees growing on abandoned agricultural sites are counted the same way as those growing in presumably old-growth forests. They conclude that including such sites might explain the records of Eucalyptus and pine species in surveys on the islands.

Finally, as noted in the other study, the program incorporates plots that contain at least 10% canopy cover by live trees or had such cover in the past. The inventory has not included urban parks – although in recent years an urban inventory protocol has been developed.

I remind you that Potter, Riitters, and Guo warned that the FIA inventory is not designed to detect newly introduced species that are early in the invasion process.

SOURCES

Kurtz, C.M. 2023. An assessment of invasive plant species in northern U.S. forests. Res. Note NRS-311. http://doi.org/10.2737/NRS-RN-311

Lugo, A.E., J.E. Smith, K.M. Potter, H. Marcano Vega, and C.M. Kurtz. 2022. The Contribution of NIS Tree Species to the Structure and Composition of Forests in the Conterminous United States in Comparison with Tropical Islands in the Pacific & Caribbean. USDA USFS General Technical Report IITF-54.

Potter, K.M and Riitters, K. 2022. A National Multi-Scale Assessment of Regeneration Deficit as an Indicator of Potential Risk of Forest Genetic Variation Loss. Forests 2022, 13, 19. https://doi.org/10.3390/f13010019.

Potter K.M., Riitters, K.H. and Guo, Q. 2022. Non-native tree regeneration indicates regional and national risks from current invasions. Frontiers in Forests and Global Change   doi: 10.3389/ffgc.2022.966407

Stout, S.L., A.T. Hille, and A.A. Royo. 2023. Science-Management Collaboration is Essential to Address Current & Future Forestry Challenges. IN United States Department of Agriculture. Forest Service. 2023. Proceedings of the First Biennial Northern Hardwood Conference 2021: Bridging Science and Management for the Future. Northern Research Station General Technical Report NRS-P-211 May 2023

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Introduced pests linked (again) to introduced plants; Prevention needs to recognize this nexus

lawns!

I have blogged many times about the risk of pest introductions on imports of live plants [= “plants for planting” in USDA’s terms]. Last October I reviewed 14-year old data indicating that nearly 70% of 455 damaging tree pests introduced to the continental U.S. had probably been introduced via plant imports. These included 95% of sap feeding and 89% of foliage feeding insects and about half of the pathogens. The approach rate of pests on imported plants was apparently 12% (Liebhold et al. 2012) — more than 100 times higher than the 0.1% approach rate found by Haack et al. (2014) for wood packaging.

First, those analyses focus almost exclusively on insects (MacLachlan et al. 2022 focused on a single insect order, the Hemiptera!), despite the many pathogens probably introduced by the plant trade in recent decades. Examples I cited included several Phytophthoras, rapid ohia death, beech leaf disease, and boxwood blight. There have been repeated detections of the Ralstonia solanacearum Race 3 biovar 2.

SOD- infected rhododendrons; photo by Jennifer Parke, Oregon State University

Second, most studies analyzing the pest risk associated with plant imports use port inspection data – which are not reliable indicators of the pest approach rate – as explained by Liebhold et al. 2012 and Haack et al. 2014 (as it pertains to wood packaging).

Third, many of the studies are based on data from a decade or longer in the past. This means the studies do not address whether APHIS’ recent changes in its approach – including adoption of NAPPRA – have resulted in reduced introductions.

A complication is that, since insects are difficult to detect, those associated with the high volumes of plants imported in recent years might not be detected for years or decades after their introduction.

I have called for APHIS to update the Liebhold et al. 2012 study to determine the approach rate for all types of organisms that threaten North American tree species. Any such study should include trees on Hawai`i, Guam, Puerto Rico, and other U.S possessions and territories. These islands are nearly always excluded from analyses of imported pests. I concede that there are probably scientific and data-management challenges but these islands are immensely important from a biodiversity point of view, and they are parts of the United States!

eastern hemlocks killed by hemlock woolly adelgid; Linville Gorge; photo by Steven Norman, USFS

MacLachlan et al. (2022) estimated that new establishments – of insects in the order Hemiptera – per unit of additional plant imports have shrunk substantially. They attribute this decline to a combination of increased imports and the presence of a growing number of insect species introduced in the past. They found that introductions to the Asian Palearctic and Neotropic regions have been reduced by depletion of species pools. Other factors are thought to explain the substantial decline in establishment likelihood for the other regions. However, lag times in detecting insect introductions complicate this assessment.

However, despite that significant decrease in risk per unit of imports, MacLachlan et al. (2022) found that the number of establishments has remained relatively constant over the past century because of substantial increases in overall import levels and diversification of the origins of imports across regions, which exposed the U.S. to new source species pools.

MacLachlan et al. (2022) suggested that APHIS should target biosecurity resources to the specific commodity-country pairs associated with a higher relative risk of introducing additional insect species.

Recent studies are taking a welcome new stance: looking at links between introductions of non-native plant and insect species. I first raised this approach a year ago. Studies by teams led by Doug Tallany and Sara Lalk [Lalk et al.; articles by Tallamy] agree that:

  • Non-native plants – some of which are invasive – are altering ecosystems across broad swaths of North America and the impacts are insufficiently understood.
  • The invasive plant problem will get worse because non-native species continue to be imported, planted … and to invade.
  • Plant-insect interactions are the foundation of food webs – they transfer energy captured by plants through photosynthesis to other trophic levels, plus play a major role as pollinators. Consequently, changes to a region’s flora will have repercussions throughout ecosystems.

Dr. Tallamy studies the response of herbivorous insects to non-native woody plants – not just invasive plants, but also non-native plants deliberately planted as crops or ornamentals, or in forestry. Introduced plants have completely transformed the composition of plant communities in both natural and human-dominated ecosystems world-wide. The impacts can be significant: Burghardt et al. found that 75% of North American lepidopteran species and 93% of specialist species were found exclusively on native plant species.

monarch butterfly on milkweed; photograph by Jim Hudgins, USFWS

Lalk and colleagues studied the relationships between individual species of invasive woody plants and the full range of arthropod feeding guilds – pollinators, herbivores, twig and stem borers, leaf litter and soil organisms. They decry the absence of data on the complex interactions between invasive woody plants and arthropod communities at a time when invasive shrubs and trees are so widespread and causing considerable ecological damage. (See the blog for their specific research recommendations.)

Nor is the impact of non-native plants on insect fauna limited to North America. Outhwaite et al. found that the combination of climate warming and intensive agriculture is associated with reductions of almost 50% in the abundance and 27% in the number of species within insect assemblages relative to levels in less-disturbed habitats with lower rates of historical climate warming. These patterns were particularly clear in the tropics (perhaps partially because of the longer history of intensive agriculture in temperate zones). They found that high availability of nearby natural habitat (that is, native plants) can mitigate these reductions — but only in low-intensity agricultural systems.

Recognizing that plant diversity drives global patterns of insect invasion, Liebhold et al. (2023) compared various factors associated with numbers of invasive insect species in 44 land areas.They determined that the numbers of established non-native insect species are primarily driven by diversity of plants – both native and non-indigenous. Other factors, e.g., land area, latitude, climate, and insularity, strongly affect plant diversity; thus they influence insect diversity as a secondary impact. When I blogged about this study, I noted that the article appeared more than four years earlier, but has apparently had little influence on either policy formulation governing plant introductions or pest risk analysis applied to insects or pathogens that might be introduced. I suggested that we need a separate analysis of whether fungi, oomycetes, nematodes, and other pathogens show the same association with plant diversity in the receiving environment.

Studies of plant-insect relationships continue to be published.  I welcome this!

Bonnamour et al. (2023) builds on the earlier studies. They also found that the presence of non-native plant species was a better predictor of insect invasions than such more widely discussed socioeconomic variables as trade volumes generally or even trade in plant products. However, detection of the associated insect invasions occurs years after detection of the plant invasions. Indeed, numbers of established non-native insect species corresponded more closely to plant introduction volumes in 1900 than current or recent import volumes.

Bonnamour et al. note that while the insect taxa that respond most directly to the non-native plant diversity are those that rely on those plants as hosts, pollinators, and plant visitors, over time those non-native herbaceous insects support introduced predators and parasites also.

Because of the “invasion debt” associated with that lag, Bonnamour et al. estimate that newly detected insect invasions will increase by 35% worldwide as a result of only recent plant introductions. They differentiate this “invasion debt” from “future invasions”, meaning the actual introduction of additional species resulting from future trade activities.

The model developed by Bonnamour et al. points to the highest numbers of newly introduced insect species occurring in areas with less capacity to deal with bioinvasions. Thus, the Afrotropics are anticipated to receive 869 new insect species, or a 10-fold increase over the number currently known to be established in the region. The Neotropics are projected to be invaded by 809 insect species, also a 10-fold increase. The Indomalayan region will probably detect 776 new insect species, a startling 20-fold increase. In reality, the “invasion debt” might not be quite this severe, since – as Bonnamour et al. note several times – the low numbers of introduced insects currently reported for these tropical regions probably partially reflect limited sampling. They note that already a high proportion of insect species intercepted by biosecurity services on imports arriving from Africa and South America are not yet recorded as established in the exporting regions.

Although both the European Palearctic and Australasia have already received many non-native insect species, their “invasion debt” is relatively high: 417 species for Europe, 317 species for Australasia.

The Neotropics are expected to be the greatest source of insect invasions in the future (904 exported species), followed by the European Palearctic (732 species).

Bonnamour et al. did not include non-native plant species used in agriculture, forestry, or ornamental horticulture. As noted above, these widespread deliberate plantings also affect insect fauna and higher trophic layers.

The greatest number of recorded insect introductions so far are in the Nearctic, Oceania (primarily Hawaii), Europe, and Australasia. While this imbalance is probably caused in part by the significantly limited sampling of non-native insect species in the Asian Palearctic and tropics, it is also true that these regions have received the majority of plant introductions through 1900. This factor has changed in the century since then; many non-native plant species have been recorded in the Afrotropics, Oceania, and Asia.

Eucalyptus plantation in Kwa-Zulu-Natal, South Africa; Kwa-Zulu-Natal Dept. of Transportation

Bonnamour et al. offer several potential explanations for the lag in detecting introduced insects compared to detecting introduced plants. First, it might be necessary for non-native host plants to reach a threshold of abundance before the associated insects are able to establish and spread. Second, reaching that threshold might require repeated introductions of the insect’s host plant species. Third, since only some of the imported plants are transporting insects, repeated imports of host plants might be necessary for the insect to achieve sufficient numbers to establish. Fourth, while their analysis included all non-native insect species, only some insect feeding guilds – herbivores and pollinators – are probably directly facilitated by introduced host plants. Fifth, plant species’ presence tends to be more quickly recorded than insects’ presence. Indeed, MacLaughlin et al. reported a median delay of 80 years between establishment and discovery of plant-feeding Hemiptera. This suggests that the actual time lag between plant and insect establishments might be shorter than the period discussed in Bonnamour et al.

Many insects from the European Palearctic have been introduced to the Nearctic; fewer insects have been introduced in the opposite direction. There is no consensus on the explanation. Thirty years ago Mattson et al. argued that there might be fewer niches for non-native insects in Europe due to the lower host plant diversity in this region caused by the Pleistocene/Holocene glaciations. On the other hand, more plant species from the European Palearctic to the Nearctic than the opposite.

Bonnamour et al. call for further research on:

1) time lags at the scale of individual insect species with their host plants.

2) effects of non-native plants used in agriculture, forestry, or ornamental horticulture.  

3) whether time lags between plant and insect invasions vary among taxonomic groups, feeding guilds, or among regions.

4) effect of non-native plant abundance, rather than just species richness, on non-native insect establishment.

Recommendations

Writers about interactions of non-native plant species and insect introductions make a common plea: limit the introduction and spread of non-native plants in order to prevent future invasions of both plants and insects. Bonnamour et al. suggest including the risk of insect introductions in plant invasion risk screening tools. Earlier, the Tallamy and Lalk teams called for ending widespread planting of non-native plants.

USDA Secretary Tom Vilsack

Will policy-makers accept this advice?

I believe that these same interaction of plant host and “pest” introductions presumably applies to pathogens, too. I reiterate my frequent complaint that regulators have not responded to two or more decades of criticism of the failures of the international phytosanitary system re: insect and pathogen introductions via the international nursery trade. Examples include Brasier 2008; Liebhold el. al. 2012; Santini et al. 2013; Roy et al. 2014; Eschen et al. 2015; Jung et al. 2015; Meurisse et al. 2019; O’Hanlon et al. 2021.

As I have said earlier, I appreciate that some scientists are trying to reduce scientific uncertainty about the invasive potential of pathogens native to regions other than North America; I refer here to Jiri Hulcr (see Li et al.), Mech, and Schultz. Many more such studies are needed, addressing potential impacts on a wider variety of North American host trees and shrubs.

The late (& very much lamented!) Gary Lovett of the Cary Institute had advocated halting imports of plants that are congenerics of important North American tree species, in order to minimize the risk that pests that damage those genera will be introduced.

In January I suggested that at the global level we need:

  1. National agricultural agencies, stakeholders, FAO & International Plant Protection Convention (IPPC) should consider amending the IPPC requirement that scientists identify a disease’s causal agents before regulating it. Experience shows that this policy virtually guarantees that pathogens will continue to enter, establish, & damage natural and agricultural environments.
  2. National governments & FAO / IPPC should fund greatly expanded research to identify microbes resident in regions that are important sources of origin for traded plants, vulnerability of hosts in importing countries, and new technologies for detecting pathogens (e.g., molecular tools, volatile organic compounds [VOCs]).
  3. Researchers & agencies should expand international “sentinel plants” networks; incorporate data from forestry plantations, urban plantings, etc. of non-native trees.
  4. NPPOs should adopt regulations that apply the “systems approach” or HACCP programs outlined in ISPM#36. I had discussed these approaches in my Fading Forests III report – link at end of this blog.)

I suggested further that Americans need to

  1. Evaluate the efficacy of current regulations – that is, implementing NAPPRA & Q-37 revision. This evaluation should be based on AQIM data, not port interception data. It should include arthropods, fungal pathogens, oomycetes, bacteria, viruses, nematodes. It should include threats to U.S. tropical islands (Hawai`i, Puerto Rico, Guam, etc.) which are centers of plant endemism.
  2. Apply existing programs (e.g., NAPPRA, Clean Stock Network, post-entry quarantine) to strictly regulate trade in plant taxa most likely to transport pests that threaten our native plants; e.g., plants belonging to genera shared between North American trees & plants on other continents.
  3. Recognize that plant nurseries are incubators for microbial growth, hybridization, and evolution; require nurseries to adopt sanitary operation procedures regardless of whether they sell in inter-state or intra-state commerce

SOURCES

Bonnamour, A., R.E. Blake, A.M. Liebhold, H.F. Nahrung, A. Roques, R.M. Turner, T. Yamanaka, and C. Bertelsmeier. 2023. Historical plant intros predict current insect invasions. PNAS 2023 Vol. 120 No. 24 e2221826120 https://doi.org/10.1073/pnas.2221826120 

Burghardt, K. T., D. W. Tallamy, C. Philips, and K. J. Shropshire. 2010. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1(5):art11. doi:10.1890/ES10-00032.

Lalk, S. J. Hartshorn, and D.R. Coyle. 2021. IAS Woody Plants and Their Effects on Arthropods in the US: Challenges and Opportunities. Annals of the Entomological Society of America, 114(2), 2021, 192–205 doi: 10.1093/aesa/saaa054

Li, Y., C. Bateman, J. Skelton, B. Wang, A. Black, Y-T. Huang, A. Gonzalez, M.A. Jusino, Z.J. Nolen, S. Freeman, Z. Mendel, C-Y. Chen, H-F. Li, M. Kolařík, M. Knížek, J-H. Park, W. Sittichaya, T-H.

Pham, S. Itoo, M. Torii, L. Gao, A.J. Johnson, M. Lur, J. Sun, Z. Zhang, D.C. Adams, J. Hulcr. 2022. Pre-invasion assessment of exotic bark beetle-vectored fungi to detect tree-killing pathogens. https://apsjournals.apsnet.org/doi/full/10.1094/PHYTO-01-21-0041-R

Liebhold, A.M., E.G. Brockerhoff, L.J. Garrett, J.L. Parke, and K.O. Britton. 2012. Live Plant Imports: the Major Pathway for Forest Insect and Pathogen Invasions of the US. www.frontiersinecology.org

Liebhold, A.M., T. Yamanaka, A. Roques, S. August, S.L. Chown, E.G. Brockerhoff & P. Pyšek. 2018. Plant diversity drives global patterns of insect invasions. Sci Rep 8, 12095 (2018). https://doi.org/10.1038/s41598-018-30605-4

MacLachlan, M.J., A. M. Liebhold, T. Yamanaka, M. R. Springborn. 2022. Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 7, eabj1012 (2021).

Mattson, W. J., P. Niemela, I. Millers, and Y. Ingauazo.  1994. Immigrant phytophagous insects on woody plants in the United States and Canada: an annotated list.  USDA For. Ser. Gen. Tech. Rep. NC-169, 27 pp.

Mech, A.M., K.A. Thomas, T.D. Marisco, D.A. Herms, C.R. Allen, M.P. Ayres, K.J.K. Gandhi, J. Gurevitch, N.P. Havill, R.A. Hufbauer, A.M. Liebhold, K.F. Raffa, A.N. Schulz, D.R. Uden, and P.C. Tobin. 2019. Evolutionary history predicts high-impact invasions by herbivorous insects. Ecol Evol. 2019 Nov; 9(21): 12216-12230.,

Outhwaite, C.L., P. McCann, and T. Newbold. 2022.  Agriculture and climate change are shaping insect biodiversity worldwide. Nature 605 97-192 (2022)  https://www.nature.com/articles/s41586-022-04644-x

Richard, M., D.W. Tallamy and A.B. Mitchell. 2019. Intro plants reduce species interactions. Biol Invasions https://doi.org/10.1007/s10530-018-1876-z

Schulz, A.N.,  A.M. Mech, M.P. Ayres, K. J. K. Gandhi, N.P. Havill, D.A. Herms, A.M. Hoover, R.A. Hufbauer, A.M. Liebhold, T.D. Marsico, K.F. Raffa, P.C. Tobin, D.R. Uden, K.A. Thomas. 2021. Predicting non-native insect impact: focusing on the trees to see the forest. Biological Invasions.

Tallamy, D.W., D.L. Narango and A.B. Mitchell. 2020. Ecological Entomology (2020), DOI: 10.1111/een.12973 Do NIS plants contribute to insect declines? Conservation Biology DOI: 10.1111/j.1523-1739.2009.01202.x

Uden, D.R, A.M. Mech, N.P. Havill, A.N. Schulz, M.P. Ayres, D.A. Herms, A.M. Hoover, K.J. K. Gandhi, R.A. Hufbauer, A.M. Liebhold, T.D. M., K.F. Raffa, K.A. Thomas, P.C. Tobin, C.R. Allen. 2023. Phylogenetic risk assessment is robust for forecasting the impact of European insects on North American conifers. Ecological Applications. 2023; 33:e2761.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Support House & Senate bills to Enhance Response to Forest Pests

white ash: a species that might be restored under the programs envisioned in the proposed bills

Bills have been introduced into both the House and Senate to enhance USDA APHIS and Forest Service programs intended to curtail introduction and spread of non-native forest pests and disease and – especially – programs aimed at restoring pest-decimated trees to the forest.

The House bill is H.R. 3174; it was introduced by Reps. Becca Balint (VT).

The Senate bill is S. 1238; it was introduced by Senators Peter Welch (VT), Mike Braun (IN), and Maggie Hassen (NH). [Both senators Welch and Braun are on the Agriculture Committee – which will write the bill.]

CISP hopes that the contents of these two bills will be incorporated in the Farm Bill that Congress is expected to adopt this year or next. The proposals have the support of the Forests in the Farm Bill coalition. [Unfortunately, neither the “Consolidated Recommendations” nor “Summarized Recommendations appears to be posted on the internet at present.]

In the last Congress, a nearly identical bill introduced by then-Representative Peter Welch was endorsed by the organizations listed below. We hope they will endorse the new bills now! If you are a member of one of these organizations, please ask them to do so.

Organizations that endorsed the previous bill: Vermont Woodlands Association, American Forest Foundation, Center for Invasive Species Prevention, Reduce Risk from Invasive Species Coalition, National Woodland Owners Association (NWOA), National Association of State Foresters (NASF), The Society of American Foresters (SAF), the North American Invasive Species Management Association (NAISMA), the Ecological Society of America, Entomological Society of America, a broad group of university professors and scientists, The Nature Conservancy (TNC) Vermont, Audubon Vermont, the Massachusetts Forest Alliance, the New Hampshire Timberland Owners Association, the Maine Woodland Owners Association, and the Pennsylvania Forestry Association.

I seek your help in generating support for incorporating these proposals into the 2023 Farm Bill. Please urge your representative and senators to co-sponsor the bills or otherwise support that action.

beech in a breeding experiment at The Holden Arboretum; photo by Jennifer Koch

Key points of the two bills:

  • They strengthen APHIS’ access to emergency funds. APHIS has had the authority to access emergency funds from the Commodity Credit Corporation since 2000. However, the Office of Management and Budget has often blocked its requests. See § 2, of the bills, EMERGENCY AUTHORITY WITH RESPECT TO INVASIVE SPECIES.
  • It creates two separate but related grant programs.
    • The first grant program – in § 3. FOREST RECLAMATION GRANTS – funds research addressing specific questions impeding the recovery of tree species that are native to the US and have suffered severe levels of mortality caused by non-native plant pests or noxious weeds.
    • The second grant program – in § 4. FOREST RESTORATION IMPLEMENTATION GRANTS – funds implementation of projects to restore these pest-decimated tree species to the forest. These projects must be part of a forest restoration strategy that incorporates a majority of the following components:

(1) Collection and conservation of native tree genetic material.

(2) Production of propagules of the target tree species in numbers sufficient for landscape-scale restoration.

(3) Preparation of planting sites in the target tree species’ former habitats.

(4) Planting of native tree seedlings.

(5) Post-planting maintenance of native trees.

  • § 5 states that the absence of a national policy on addressing nonnative forest pests has resulted in their receiving a low priority within all Federal agencies. It then mandates a study to analyze agencies’ available resources, raise the issue’s priority, and improve coordination among agencies. This study is to be carried out by an independent institution, for example the National Academy of Sciences. The authors are to consult with specialists in entomology, genetics, forest pathology, tree breeding, forest and urban ecology, and invasive species management.
  • Funding for all three action components – the emergency response and both grant programs – would come from the Commodity Credit Corporation, so it would not be subject to the vagaries of annual appropriations bills.
Forest Restoration Alliance volunteers potting hemlock seedlings; photo provided by Fred Hains

Entities which could apply for the research grants (§ 3 of the bills) include Federal agencies; State cooperative institutions; academic institutions offering degrees in the study of food, forestry, and agricultural sciences; and non-profit organizations exempt from taxes under §501(c)(3) of the tax code. Types of research funded could include:

      ‘‘(A) biocontrol of nonnative pests & diseases or noxious weeds severely damaging native tree species [the bill does not specify, but Project CAPTURE identifies many qualifying species; see also my earlier blog];  

‘‘(B) exploration of genetic manipulation of the plant pests or noxious weeds;

‘‘(C) enhancement of pest-resistance mechanisms of hosts; and

‘‘(D) development of other strategies for restoring individual tree species.

The maximum amount of such grants is $400,000 per year.

Entities which could apply for the implementation grants (§ 4 of the bills) include a cooperating forestry school; a land-grant college or university; a State agricultural experimental station; a 501(c)(3) organization. Funding would begin at $3 million for FY 2023 and rise to $10 million for FY 2026.

The Secretary of Agriculture would be guided in implementing these programs by two committees. One – the committee of experts – would constitute representatives of the USFS, APHIS, ARS & State forestry agencies. The second – the advisory committee – would be composed of representatives of land-grant colleges and universities and affiliated State agriculture experiment stations, forest products industry, recreationists, and professional forester, conservation, and conservation scientist organizations.

Port-Orford cedar seedlings at USFS Dorena Center – a model for success! Photo provided by Richard Sniezko

Please contact your Member of Congress (Representative) and senators to urge them to support inclusion of these provisions in the Farm Bill.  [Remember: they work for us!] Telling them of your support for these bills is especially important if your Representative or Senator is on the Agriculture Committee.  I list those legislators here:

StateHOUSE AGRIC COMMSENATE AGRIC COMM
ALBarry MooreTommy Tuberville
ARRick CrawfordJohn Boozman
CADoug Lamalfa
John Duarte
Jim Costa
Salud Carbajal
 
COYadira CaraveoMichael Bennet
CTJahana Hayes 
FLKat Cammack
Darren Soto
 
GAAustin Scott
David Scott
Sanford Bishop
Raphael Warnock
HIJill Tokuda 
IARandy Feenstra
Zach Nunn
Joni Ernst
Charles Grassley
ILMike Bost
Mary Miller
Nikki Budzinski
Eric Sorensen
Jonathan Jackson
Richard Durbin
INJim BairdMike Braun
KSTracey Mann
Sharice Davids
Roger Marshall
KY Mitch McConnell
MAJim McGovern 
MEChellie Pingree 
MIElissa SlotkinDebbie Stabenow
MNAngie CraigAmy Klobuchar
Tina Smith
MOMark Alford 
MSTrent KellyCindy Hyde-Smith
NCDavid Rouzer
Alma Adams
 
ND John Hoeven
NEDon BaconDeb Fischer
NJ Cory Booker
NMGabe VasquezBen Ray Lujan
NYMarc Molinaro
Nick Langworthy
Kirsten Gillibrand
OHMax Miller
Shontel Brown
Sherrod Brown
OKFrank Lucas 
ORLori Chavez-Deremer
Andrea Salinas
 
PAGlenn ThompsonJohn Fetterman
  
SDDusty JohnsonJohn Thune
TNScott Desjarlais
Brad Finstad
 
TXRonny Jackson
Monica de la Cruz
Jasmine Crockett
 
VAAbigail Spanberger 
VTPeter Welch 
WAMarie Gluesenkamp Perez 
WIDerrick van Orden 

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

New Tool for Evaluating Insect Pests’ Possible Impacts: One Test Shows Great Potential for Identifying the Greatest Threats to our Forests

red spruce (Picea rubens) — the conifer at greatest risk; This grove is in Great Smoky Mountains National Park; photo by Famartin via Wikimedia Commons

Scientists have incorporated into the widely-used urban tree management tool, i-Tree, a tool to help predict the damage that an insect species little known in North America might cause to trees growing in a specific area if it is introduced. This tool is available to all here.

I rejoice that predictive tools are becoming widely available. The tool is obviously the result of a lot of work by participating scientists – who are listed below. I hope many of you will try it out! Perhaps you and your students can join efforts by the tool-development team, especially in analyzing insect species from Central America and Asia that have not yet arrived in North America? If you are interested in helping, contact Katheryn Thomas, Angela Mech, or Ashley Schulz; you can obtain their contact information by visiting their institution’s website. You might choose which insect species to evaluate by consulting your own or colleagues’ research, reviewing the refereed and grey literature, APHIS and CFIA interception databases, databases maintained by several countries, websites such as CABI, EPPO, etc.

The new tool might help create a more effective “early warning” system. Whether this happens depends on what others do now.  Anyone – perhaps a staffer of a federal or state agency, or a city tree manager, or an academic – can apply the tool to meet his/her own objectives. If a more effective national or continental “early warning” system is to be created, someone needs to set up a process for conveying the findings to responsible federal or state/provincial agencies or even the scientific societies, e.g., Entomological Society (and, in the case of beetles transporting associated fungi, American Phytopathological Society). Perhaps the most challenging issue is to find an entity willing to receive these communications, review their accuracy, and – at a minimum – make the results accessible to phytosanitary agencies, interested public, etc. One possible entity is “PestLens, a web-based early-warning system maintained by APHIS. The project’s objective is to provide early-warning information and facilitate a prompt, coordinated, and appropriate safeguarding response. PestLens posts alerts once a month. These are visible to anyone who subscribes. However, it remains unclear how often APHIS and state agencies act on the notices. The North American Plant Protection Organization (NAPPO) also hosts an alert system, but it records only official notices, leading to some absurdities. (E.g., NAPPO reported Mexico’s designation of the invasive shot hole borers as quarantine pests – without mentioning that they are well-established in California because neither APHIS nor California Department of Food and Agriculture has designated the insects as officially regulated.)

Those applying the tool need to have some knowledge and access to a range of scientific resources (including, in my view, people who can check the accuracy of the data entered into the system). Users must have appropriate skills to conduct some research into the insect and what it feeds on. Information required for the tool includes the following:

  • taxonomic information for the insect (Order, Family, Genus, Species)
  • the feeding guild of the insect (i.e., foliovore, gall, reproductive, root, sap, wood)
  • climate in the native range of the insect (i.e., Tropical, Dry, Temperate, Continental, Polar)
  • native range of the insect (i.e., Afrotropical, Australasian, Indomalayan, Neotropical, Oceanian, Palearctic Asia, Palearctic Europe)
  • the host trees of the insect in its native range (scientific name [Genus species]). The tool warns participants to include the full range of potential tree hosts – by listing either all or a representative sample. The tool will use this information to estimate the evolutionary distance between known native hosts and potential North American hosts using comprehensive phylogenetic tree of plants.

Clearly, those using the tool have their work cut out for them! The tool does provide definitions, descriptors, and drop-down lists for most of the factors, including insect orders and families, tree genera, geographic origins, and climate types. Users are now anticipated to be employees of federal and presumably state agencies; academics – even students!—and others who have the capacity to research what an insect feeds on in its native range.

This tool is intended to predict the probability that an insect species of concern – either newly detected in the country or thought likely to invade based on port detections or other reasons — will become a high impact invader. I rejoice that they are inclusive – the tool can test the vulnerability of 50+ conifer species and 360+ hardwood species native to North America. Assuming the assessor can enter accurate information for the categories outlined above, the tool can then provide a list of probabilities for each relevant North American host tree.

The tool is based on the findings of two studies, Mech et al. and Schulz et al. (full citations at the end of this blog). I discussed these studies in earlier blogs. They were also incorporated into the broader effort to identify predictive traits carried out by Raffa et al. (full citations at the end of this blog) and discussed in a separate blog.  See the section titled “Potential” to see the exciting results of an application of the Mech et al. findings and methods. 

To develop the tool, project scientists synthesized data on traits and factors representing four types of drivers: (1) insect traits, (2) tree traits (especially those associated with host defenses), (3) the relatedness between the insect’s native and North American tree hosts, and (4) the relatedness between the non-native insect and North American insects on the same tree. They tested key hypotheses, e.g., defense free space and enemy release. The team tested the tool with researchers from USDA APHIS and Canadian Food Inspection Agency (CFIA), Northeast Plant Diagnostic Network, and National Invasive Species Council.

Norway spruce (Picea abies) — host of 30 of the 62 insect species analyzed in Uden et al.; photo by Marzena via Pixabay

The research group hopes this tool will stimulate development of a global database of insects which will utilize the results of basic research on phytophagous insects and what they eat. Basic research on insects native to North America is also important and can benefit other countries that might want to develop a similar tool for their own phytosanitary needs.

The Tool’s Potential

Many of the scientists who developed the i-Tree tool have participated in an analysis of the threat to North American conifer species posed by insects native to Europe that have not yet been introduced to North America (Uden et al.). They applied the methodology from Mech et al., which is comparable to, although not identical to, the i-Tree system. They (1) created a list of 62 European insect species that appear to pose a risk to 47 species of North American conifers; (2) identified and compared the predicted likelihoods of high-impact invasion under each of four phylogenetic systems datasets; and (3) evaluated risk and vulnerability trends among insects & conifer hosts, respectively. In total they evaluated 2,914 insect–novel host pairs.

Fraser fir (Abies fraseri) in Great Smoky Mountains National Park; photo by James St. John via Flickr

Among their findings are the following:

  • Of the 2,914 pairs examined, 302 (10.4%) had a predicted risk of high impact. These pairs included 41 (66%) of the insect species and 20 (41.7%) of the conifer species. The proportion of potential invasions posing a significant risk is higher than those indicated by earlier studies.
  • The insect species posing a risk of high-impact invasion were spread among insect orders, with relatively high levels concentrated in Lepidoptera and Coleoptera, fewer in the Hymenoptera and Hemiptera.
  • Consistent with Mech et al., they found a “Goldilocks” period of evolutionary divergence of hosts exposing the North American tree species to the highest risk. Thus, if a North American conifer shared a common ancestor with the insect’s native European host ~2–10 million years ago, it was predicted to be more vulnerable to a high-impact invasion by a conifer specialist.
  • North American fir (Abies) and spruce (Picea) species are more vulnerable to the introduction of European conifer-specialist insects than are pines (Pinus). [Mech et al. found that trees with high shade tolerance and low drought tolerance are more vulnerable. These traits also fit fir and spruce; but not pine.] The most vulnerable tree species was red spruce (Picea rubens).

Uden et al. also say Fraser fir (Abies fraseri) and Carolina hemlock (Tsuga caroliniana) are highly vulnerable to European insect species. They identified 17 high-risk insect species for Fraser fir. Of course, both are already severely depleted by non-native insect pests (Balsam woolly adelgid and hemlock woolly adelgid, respectively). They have also been identified by the Potter et al. “Project CAPTURE” process as having high priorities for conservation efforts.

I worry that fir and spruce are less important as timber species than pines; I hope this does not result in agencies and important stakeholders assigning this risk finding a lower priority.

Uden et al. assert that their study shows that this system can identify vulnerable tree species in the absence of information about which particular insect might invade. This information helps managers focus biosecurity and management program programs on protecting the most vulnerable tree species. However, 57% of the North American conifers (27 species) were found to be vulnerable under at least one of the insect-host pairs. To further set priorities, they suggest combining predictions from this analysis with USFS Forest Inventory and Analysis (FIA) data to identify vulnerable biogeographic regions and vegetation communities. (Fraser fir and Carolina hemlock rank high under this process.) Scientists could also apply species importance indicators, such as the NatureServe Explorer plant community descriptions. They suggest linking these criteria to the USFS Early Detection Rapid Response surveillance program, link to website which currently targets specific insect species.

red pine (Pinus resinosa) – the pine species at greatest risk; photo by Charles Dawley via Flickr

Uden et al. also warn that their analysis focused on a narrow range of possible introduced species: insects from Europe that feed on conifers exclusively. They caution that no one should assume that tree species that have a low “vulnerability” rank in this study should be considered at low risk for all possible introduced insects. They suggest researchers should identify tree species from the wider Palearctic that are within the high-impact “Goldilocks” zone of divergence times in relation to specific North American tree species, and then identify the insects that feed on those Palearctic trees to determine the species that would have the highest predicted risk of causing a high impact on those North American conifers.

Of course, many North American tree species are not conifers! Applying the methods in Schulz et al. – now integrated into the i-Tree tool – would facilitate similar predictive findings for the angiosperms.

Participants 

The importance of this project is seen in the impressive array of funders supporting it. They include:

  • U.S. Geological Survey John Wesley Powell Center for Analysis and Synthesis for a working group titled “Predicting the nest high-impact insect invasion: Elucidating traits and factors determining the risk of introduced herbivorous insects on North American native plants;”
  • USDA Forest Service National Urban and Community Forestry Advisory Council funded a working group titled “Forecasting high-impact insect invasions by integrating probability models with i-Tree from urban to continental scales”;
  • Nebraska Cooperative Fish and Wildlife Research Unit;
  • University of Washington;
  • USDA Forest Service Eastern Forest Environmental Threat Assessment;
  • National Science Foundation Long-Term Ecological Research program;
  • USDA Forest Service International Programs; and
  • USDA National Institute of Food and Agriculture (Hatch and McIntire-Stennis projects).

Scientists who created this tool:
Kathryn A. Thomas (USGS – Southwest Biological Research Center)
Travis D. Marsico (Arkansas State University)
Daniel A. Herms (The Davey Tree Expert Company)
Patrick C. Tobin (University of Washington)
Andrew Liebhold (U.S. Forest Service)
Nathan Havill (U.S. Forest Service)
Angela Mech (University of Maine)
Ashley Schulz (Mississippi State University)
Matthew Ayres (Dartmouth College)
Kamal Gandhi (University of Georgia)
Ruth A. Hufbauer (Colorado State University)

Kenneth Raffa (University of Wisconsin) Daniel

Uden (University of Nebraska-Lincoln)

Carissa Aoki (Maryland Institute College of Art)

Scott Maco (The Davey Tree Expert Company)

Angela Hoover (University of Arizona)

SOURCES

Mech, A.M., K.A. Thomas, T.D. Marsico, D.A. Herms, C.R. Allen, M.P. Ayres, K.J.K Gandhi, J. Gurevitch, N.P. Havill, R.A. Hufbauer, A.M. Liebhold, K.F. Raffa, A.N. Schulz, D.R. Uden, and P.C. Tobin. 2019. Evolutionary history predicts high-impact invasions by herbivorous insects. Ecol Evol. 2019. Nov; 9(21):12216-12230.

Potter, K.M., Escanferla, M.E., Jetton, R.M., Man, G., Crane, B.S. 2019. Prioritizing the conservation needs of United States tree species: Evaluating vulnerability to forest insect and disease threats. Global Ecology and Conservation (2019), doi: https://doi.org/10.1016/j.gecco.2019.e00622.

Raffa, K.F., E.G. Brockerhoff, J-C Gregoire, R.C. Hamelin, A.M. Liebhold, A. Santini, R.C. Venette, and M.J. Wingfield. 2023. Approaches to Forecasting Damage by Invasive Forest P&P: A Cross-Assessment.  BioScience Vol. 73 No. 2: 85–111    https://doi.org/10.1093/biosci/biac108 

Schulz, A.N.,  A.M. Mech, M.P. Ayres, K. J. K. Gandhi, N.P. Havill, D.A. Herms, A.M. Hoover, R.A. Hufbauer, A.M. Liebhold, T.D. Marsico, K.F. Raffa, P.C. Tobin, D.R. Uden, K.A. Thomas. 2021. Predicting non-native insect impact: focusing on the trees to see the forest. Biological Invasions.

Uden, D.R, A.M. Mech, N.P. Havill, A.N. Schulz, M.P. Ayres, D.A. Herms, A.M. Hoover, K.J. K. Gandhi, R.A. Hufbauer, A.M. Liebhold, T.D. M., K.F. Raffa, K.A. Thomas, P.C. Tobin, C.R. Allen. 2023. Phylogenetic risk assessment is robust for forecasting the impact of European insects on North American conifers. Ecological Applications. 2023; 33:e2761.

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Let’s Not Dismiss Conservation of Biodiversity While Seeking Carbon Storage in Forests

red deer on farm in New Zealand; photo by Bernard Spragg via Flickr

Among the non-native species damaging forest systems are mammals – introduced deer, goats and sheep, and swine, … These animals have the greatest impacts on island systems that are sufficiently isolated that they have no native terrestrial mammals, e.g., Hawai`i and New Zealand. Several New Zealanders have published a study of their impacts (Allen et al.; full citation at end of the blog). The focus of their analysis is the native forests’ ability to sequester carbon and thus mitigate climate change. The scientists are well aware, however, that forests provide many other ecosystem values and services, including biodiversity, water supply and quality, etc.

Introduced ungulates can have many direct effects: reduction and damage to understory biomass, depletion of seedling regeneration, exacerbated soil erosion, and local nutrient imbalances. Mammals’ browsing can modify the composition of plant communities by favoring abundance of unpalatable species. Changes also can alter ecosystem functions associated with nutrient cycling, e.g., by reducing nutrient returns to the soil and altering rates of litter decomposition

In these ways, introduced ungulates exert long-term impacts on forests’ capacity to store carbon.

Allen et al. aimed to determine the extent of these effects on forests’ capacity to store carbon, both above- and below-ground, and on forest structure and diversity. The authors compared data from 26 pairs of sites across New Zealand – half with ungulate exclosures and half adjacent unfenced control plots. The ungulate exclosures had all been established for at least 20 years. All the sites were in species-rich communities of conifers and broadleaved evergreen angiosperm trees. These forests (1) cover about one-third of the country’s remaining mature natural forest; (2) contain tree species of a wide range of palatability to ungulate herbivores; and (3) have been named a conservation priority for forest carbon management. The ungulates present on the plots were European red deer (Cervus elaphus), fallow deer (Dama dama), sika deer (Cervus nippon), and feral goats (Capra hircus).

They assert that New Zealand is a good place to do this type of study because ungulate introductions are relatively recent so their impacts are well documented.

Allen et al. found that managing invasive ungulates makes valuable contributions to conserving biodiversity but not to carbon sequestration. They found little difference in total ecosystem carbon between ungulate exclosures and unfenced control plots. Most of the difference they did find was explained by the biomass of the largest tree within each plot. As they point out, these large trees have been unaffected by invasive ungulates introduced during the last 20–50 years. However, they believe ungulate-caused changes in understory biomass, species composition, and functional diversity might result in major shifts in the diversity and composition of regenerating species. Hence, longer term consequences for both ecosystem processes and storage of forest carbon storage can be expected.

Indeed, excluding ungulates did increase the abundance and diversity of saplings and small trees. The basal area of the smallest class of tree size was 70% greater. Species richness of small trees and saplings was 44% and 68% higher, respectively. This difference had little impact on overall carbon storage, however, because the small trees and saplings store only about 5%. In contrast, the largest tree size class (dbh =/>30 cm), with their roots, contributed 44% of total ecosystem carbon in both exclosure and control plots. The largest effects of exclosures on carbon stocks were in early successional stands, e.g., those affected by such major disturbances as windthrow, volcanic activity, or landslides.

Climate change is expected to cause surprising interactions among forest productivity, herbivory, disturbance. Allen et al. suggest that authorities should focus on excluding ungulates on these highly productive regenerating forests rather than old-growth forests. I am disturbed by this suggestion. It exposes the most biologically diverse forests to continuing damage.

Data gaps

New Zealand has many long-lived, slow-growing tree species. Recruitment of understory trees is already low across both main islands. This situation has been attributed to ungulate browsing. Over centuries, this might result in shifts in the canopy composition. Allen et al. call for additional research to increase our understanding of how browsing and other short-and long-term drivers affect the regeneration of large trees. Also, data on soil CO2 emissions needs better integration.

Australian brushtail possum; photo by Peter Firminger via Flickr

The study did not consider the impact of other introduced mammals, such as feral pigs (Sus scrofa), rodents, and Australian brushtail possum (Trichosurus vulpecula). The possum is known to damage New Zealand trees. The scientists did not explain this omission; I assume it might have been the result of either lack of resources to support a broader study or differences in management strategies – or both?

I note that the study also did not address the extent to which non-native pathogens threaten these large trees. In response to my query, Kara Allen said that their plots did not include many kauri (Agathis australis) trees, so the severe dieback disease caused by Phytophthora agathidicida did not affect their results. Naturally regenerating kauri is limited to a small area of warm temperate rainforests located at the top of the North Island. So kauri potentially play a relatively small role in terms of overall carbon stocks in New Zealand’s forests. On the other hand, Allen says that myrtle rust (Austropuccinia psidii) could have a major impact on New Zealand forests’ carbon storage. Trees in the host family, Myrtaceae, are ecologically important across both islands. Also, they comprise a large portion of overall forest carbon stocks (ranked in the top 5 largest families for above- and belowground biomass). An example is southern rata (Mterosideros umbellata), which are preferentially fed on by Australian brush possum.

southern rata; photo by Stan Shebs

Bernd Blossey, (free access!) who has long studied the role of high deer populations in North American forests, praises the study’s attempt to measure data, not just rely on models, and its inclusion of soil. However, he notes other limitations of the New Zealand study:

  • The small exclosures (20 x 20 m) are subject to edge effects. Some of Blossey’s exclosures occupy 2 hectares.
  • Twenty  years  is too short a time for analysis of such long-term processes as carbon sequestration and regeneration of slow-growing trees. Therefore, any results must be considered preliminary. Furthermore, no one recorded any differences in carbon sequestration of the paired plots at the time the exclosures were set up.
  • There’s no mention of possible impacts by introduced earthworms. 

Dr. Blossey recognizes that the current study’s authors cannot re-do actions taken decades in the past. Still, the data gaps reduce the value of the findings.

I conclude that uncertainties continue due to:  the long timelines of species’ regeneration and growth to full sizes; the requirement for large exclosures; the complexity of factors affecting carbon sequestration; and probably other influences.. Managers trying to maximize carbon sequestration are forced to act without truly knowing the best strategy or how their actions will affect the future. 

For more about invasive mammals’ impacts in U.S. forests, also see the study by USFS scientists, Poland et al. (full citation listed in sources). One can enter “mammal” in the search box for the on-line PDF.

SOURCES

Allen, K., P.J. Bellingham, S.J. Richardson, R.B. Allen, L.E. Burrows, F.E. Carswell, S.W.Husheer, M.G. St. John, D.A. Peltzer, M. Whenua. 2023.  Long-term exclusion of invasive ungulates alters tree recruitment and functional traits but not total forest carbon. Ecological Applications. 2023; e2836. https://onlinelibrary.wiley.com/r/eap

Poland, T.M., Patel-Weynand, T., Finch, D., Miniat, C. F., and Lopez, V. (Eds) (2019), Invasive Species in Forests and Grasslands of the United States: A Comprehensive Science Synthesis for the United States Forest Sector.  Springer Verlag. The on-line version as at https://link.springer.com/book/10.1007/978-3-030-45367-1

Posted by Faith Campbell

We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org

Eradicating Invasive Species: You need “social license” to succeed

spread of non-native conifers in mountains of New Zealand; photos by Richard Bowman; New Zealand government website

As those of us who want to “do something” to counter bioinvasions struggle to mobilize both the  resources and the political will necessary, I rejoice that more studies are examining what factors affect “social license” [= public approva] for such programs. One such study was recently published in New Zealand — Mason et al. (full citation at the end of the blog). New Zealand enjoys a greater appreciation of the uniqueness of its biology and awareness of invasive species’ impacts than the United States. However, their findings might provide useful guidance in the US and elsewhere.

Mason et al. sought to understand motivations of, and constraints on, those local groups responsible for controlling the spread of non-native conifers into New Zealand’s remnant native ecosystems. Non-forest ecosystems across much of the country are at risk of rapidly transforming into exotic conifer forests. For these reasons, authorities are pressing for timely removal of existing seed sources, that is, mature non-native conifer trees of several species. The blog I posted earlier apparently describes effects of conifer invasions in lowland ecosystems, whereas the Programme described here is focused on high-elevation systems.

The eradication effort in the study is the National Wilding Conifer Control Programme, establishedin 2016. A large increase in funding provided during the COVID-19 lockdown made it practical to try to eradicate seed sources from large swathes of vulnerable land. The Programme coordinates control efforts across the country, working across property and land-tenure boundaries. Landowners are expected to cover 20% of the cost of removing conifers from their land. Since removing all seed sources of high-risk conifer species from the landscape is key to achieving long-term goals, success is unlikely if significant seed sources are allowed to persist.

Mason et al. combined workshops, questionnaires, and site visits to gather data on particular aspects of this Programme. They found that social resistance, rather than lack of scientific knowledge, was often the main barrier to success in managing widespread invasive species. The authors do not address whether the fact that only 30 people provided information for their study might undermine the reliability of their findings.

map of conifer wilding sites; adapted from Wilding conifers – New Zealand history and research background, a presentation by Nick Ledgard at the “Managing wilding conifers in New Zealand – present and future” workshop (2003)

The authors suggest that the main benefit of scientific information might be to increase stakeholders’ support for management interventions — rather than to guide manager’ decisions about which strategies to pursue.  To support social license, invasive species research programs might need to focus not only on cost-effective control technologies and strategies, but – perhaps especially — the benefits (both tangible and intangible) of invasive species control for society.

Mason et al. found that people were motivated to combat conifer invasions by impacts with direct influence on humans or human activities (e.g., reduced water yield, damage to infrastructure from wildfires, reduced tourist activities due to landscape transformation) and also by impacts affect ecosystems (e.g.,  impacts on biodiversity, aquatic ecosystems and landscapes).  

People objected to control or eradication programs primarily because of social concerns. These included the unwillingness of landowners to participate and regulatory frameworks that had perverse incentives.

Mason et al. called for greater efforts by scientists to persuade stakeholders[p1]  to allow removal of “wilding” conifers from private land and development of more appropriate regulations. They found that forecasting models were particularly effective in persuading people to support these efforts. It seems to me that outreach teams might need “translators” to convert scientists’ findings to information that would be more useful by stakeholders.

The authors concede that the “wilding conifer” situation has unique attributes. First, invading conifers present a stark, easily seen difference between native and invaded ecosystems. Second, some – but not all—stakeholders appreciate the uniqueness of New Zealand’s biomes. Third, the impacts of conifer invasion are sufficiently well known that they can be described succinctly and accurately.

Do these unique attributes undercut the relevance of this study to North America? It is still true that ongoing support from local stakeholders (including landowners and community groups) influences the effectiveness or profitability of managing invasive species. .It is also true that groups’ varying values affect willingness to support the activities.

Mason et al. think through the issue of stakeholders’ conflicting perspectives on the value of particular invasive species and the values threatened by that invader. These can include ethical or safety concerns around management methods, particularly regarding toxins and genetic modification. Economoic costs are also a factor – especially if the landowner must pay all or some of them.

I find it interesting that the government simultaneously funded a 5-year research program to study various issues regarding the spread, ecosystem impacts, and control of wilding conifers. The result is the Mason et al. study discussed here. I wish the U.S. funded independent analyses of its invasive species programs!

Pinus contorta – the most rapidly growing Pinus introduced to New Zealand; photo by Walter Siegmund / Wikimedia

More Details, Policy Suggestions

Workshop attendees unanimously identified landscape impacts as a reason for controlling wilding conifers. This primarily concerned the loss of New Zealand’s visual heritage or cultural identity rather than loss of native species’ habitats. When the landowner was raised in Europe, these cultural or heritage values sometimes had the opposite effect, since they see conifer forests as important components of “natural” landscapes.

Currently, landowner funding and permission is required for conifer removal. Some individual landowners want to establish new forestry plantings. Some resist removal of existing forestry plantations (which provide income) and shelter belts (which provide shelter for livestock in high country landscapes). Some landowners were unwilling to pay their 20% of removal costs. Or they objected to certain conifer control methods—particularly helicopter spraying of herbicides. New Zealand’s regulatory process also requires years of negotiating to remove standing trees – further delaying any action. In theory, landowners who resist removal could be prosecuted under the Biosecurity Act. However, this approach has never been tried for removing wilding conifers.

Mason et al. suggested several changes in policy to overcome some of these barriers.

First, forestry consultants can “game” the wilding conifer “risk calculator” to obtain government approval to establish conifer plantations in high-risk environments. The authors suggest that authorities create a “liability calculator.” Under this system, landowners wishing to retain conifers on their land for whatever reason would be liable for any subsequent containment costs. However, developing such a tool requires more finely-scaled models of conifer spread.

Second, given the high costs of combatting invading conifers if seed sources are allowed to persist, they suggested that it might be more cost-effective for the control program to pay for plantation removal under New Zealand’s Emissions Trading Scheme.

Given the overwhelmingly social and regulatory nature of barriers to success, the primary role for scientific information is providing assessments of outcomes in the absence of wilding conifer control. Preferred messages were return-on-investment estimates and forecasts of ecosystem impacts, particularly relating to biodiversity loss, water yield reduction, and wildfire hazard. Forecasts were key to demonstrating that management interventions reduced future control costs and avoided environmental impacts which large sections of the community value (i.e. biodiversity loss, reduction in water yield and agricultural productivity, increased wildfire risks). Practitioners felt that forecasting models might also channel research toward areas of high uncertainty. Mason et al. recognize the difficulties presented by inherent complexity of ecological systems. However, they think “good practice” guidelines on forecasting are emerging.

The authors find that information content and presentation need to be tailored to the various audiences – most of whom lack experience in interpreting data from environmental forecasting models. They suggest that outreach materials focus on clear illustration of the tangible and intangible benefits of wilding conifer management rather than detailed explorations of scenarios. Participants suggested ways to improve the web tool to make it more accessible to a non-expert audience. 

Mason et al. mention aspects that require balancing, but don’t suggest criteria for making these choices. They say it is important to include all relevant stakeholders in invasive species management governance bodies. The absence of stakeholders with positive attitudes to wilding conifer invasions led to unanticipated external social resistance to the Programme. They recognize that including stakeholders with conflicting interests might obstruct the decision-making process.  Also, in areas where there has been success in containing conifers’ spread, people can’t see invading trees, so they don’t recognize the problem. They also note that existing data do not adequately recognize risks of spread from deliberately planted seed sources such as shelter-belts, plantations and amenity plantings. The authors do not discuss how to integrate these data into analyses and public outreach.

Finally, Mason et al. recognize that many other factors strongly influence stakeholders’ willingness to support invasive species control programs, especially the level of trust and strength of relationships between bioinvasion program staff and stakeholders.

Also, they suggest topics for future research: assessing how well forecasting models are integrated with  communications with stakeholders; how qualitative and quantitative research methods in different fields might support one another; and empirical tests to measure the relative effects on social license of a) involving stakeholders in developing models, b) using forecasts to assess the consequences of different management decisions and, c) the usefulness of different methods for incorporating scientific information in stakeholder engagement.

SOURCE

Mason, N.W.H., Kirk, N.A., Price, R.J. et al. Science for social license to arrest an ecosystem-transforming invasion. Biol Invasions 25, 873–888 (2023). https://doi.org/10.1007/s10530-022-02953-w

see also https://www.doc.govt.nz/nature/pests-and-threats/weeds/common-weeds/wilding-conifers/

Posted by Faith Campbell

What do YOU think about the role “social license” plays in US invasive species programs? We welcome comments that supplement or correct factual information, suggest new approaches, or promote thoughtful consideration. We post comments that disagree with us — but not those we judge to be not civil or inflammatory.

For a detailed discussion of the policies and practices that have allowed these pests to enter and spread – and that do not promote effective restoration strategies – review the Fading Forests report at http://treeimprovement.utk.edu/FadingForests.htm

or

www.fadingforests.org


 

Help Fight for $$ to Protect Forests

Help Fight for Money to Protect Forests

This blog asks YOU!!! to support funding for some of the key USDA programs. This blog focuses on USDA’s Animal and Plant Health Inspection Service (APHIS). APHIS is responsible for preventing introduction of pests that harm agriculture, including forests; and for immediate efforts to eradicate or contain those pests that do enter. While most port inspections are carried out by the Department of Homeland Security Bureau of Customs and Border Protection, APHIS sets the policy guidance. APHIS also inspects imports of living plants.

Please help by contacting your members of the House and Senate Appropriations Committees. I provide a list of members – by state – at the end of this blog. APHIS is funded by the House and Senate Appropriations Subcommittees on Agriculture and Related Agencies. These Subcommittees have scheduled hearings on the topic and I’ve drafted written testimony for them. I expect CISP will be joined by additional members of the Sustainable Urban Forest Coalition in signing the testimony. You can add the crucial voice of constituent’s support.

I will blog soon about funding for USDA’s Forest Service (USFS) – I don’t yet have necessary information to suggest specific funding levels.

Your letter or email need be no more than a couple paragraphs. To make the case for greater funding, feel free to pick-and-choose from the information that follows. Your greatest impact comes from speaking specifically about what you know and where you live.

These are the specific dollar amounts we’d like you to ask for. The rationale for each is below.

Appropriations for APHIS programs (in $ millions)

ProgramFY 2022 (millions)FY 2023FY 2024 Pres.’ request Our ask
Tree & Wood Pest$61$63$64$65 M
Specialty Crops$210$216$222$222 M
Pest Detection$28$29$30$30 M
Methods Development$21$23$23$25 M

The Costs of Introduced Pests

Introduced pests threaten many forest products and services benefitting all Americans, including wood products, wildlife habitat, carbon sequestration, clean water and air, storm water management, lower energy costs, improved health, aesthetic enjoyment, and related jobs. Already, the 15 most damaging non-native pests threaten at least 41% of forest biomass in the “lower 48” states. In total, these 15 species have caused an additional annual conversion of live biomass to dead wood at a rate similar in magnitude to that attributed to fire (5.53 TgC per year for pests versus 5.4 to 14.2 TgC per year for fire) [Fei et al.; full citation at end of blog; see also earlier].

tanoaks killed by SOD; Oregon Department of Forestry photo

These pests also impose significant costs that are borne principally by municipal governments and homeowners. As more pests have been accidentally introduced over time, these costs have risen. A study published last year [Hudgins et al.] projected that by 2050 1.4 million street trees in urban areas and communities will be killed by introduced insect pests. Municipalities on the forefront include Milwaukee and Madison Wisconsin; the Chicago area; Cleveland; and Baltimore, Towson, and Salisbury, Maryland. Removing and replacing these trees is projected to cost cities $30 million per year. Additional urban trees – in parks, on homeowners’ properties, and in urban woodlands – are also expected to die and require removal and replacement.

Pathways of Introduction

Tree-killing pests are linked to the international supply chain. Many pests—especially the highly damaging wood-borers like emerald ash borer, Asian longhorned beetle, polyphagous and Kuroshio shot hole borers, and redbay ambrosia beetle—arrive in inadequately treated crates, pallets, and other forms of packaging made of wood. Other pests—especially plant diseases like sudden oak death and sap sucking insects like hemlock woolly adelgid—come on imported plants. Some pests take shelter, or lay their eggs, in or on virtually any exposed hard surface, such as steel, decorative stone, or shipping containers.

infested wood from a crate; Oregon Department of Agriculture photo

Wood Packaging

Imports from Asia have historically transported the most damaging pests, e.g., Asian longhorned beetle, emerald ash borer, redbay ambrosia beetle, and the invasive shot hole borers. For decades goods from Asia have dominated imports. As of February 2022, U.S. imports from Asia were running at a rate of 20 million shipping containers per year. A recent analysis [Haack et al.; see also here] indicates that at least 33,000 of these shipping containers, perhaps twice that number, are carrying a tree-killing pest. These facts have led scientists to project [Leung et al.] that by 2050, the number of non-native wood-boring insects established in the US could triple. Hudgins et al. say the greatest damage would occur if an Asian wood-boring insect that attacks maples or oaks were introduced. Such a pest could kill 6.1 million trees and cost American cities $4.9 billion over 30 years. The risk would be highest if this pest were introduced to the South – and U.S. southern ports are receiving more direct shipments from Asia after the expansion of the Panama Canal in 2016. https://www.nivemnic.us/?m=202207

After introduction of the ALB, APHIS acted to curtail further introductions in wood packaging from China. First – in 1998 – APHIS required China to treat its wood packaging. Second, it worked with foreign governments to develop the International Standard for Phytosanitary Measures (ISPM) #15. The U.S. and Canada began phasing in ISPM#15 in 2005 with full implementation in 2006. Under ISPM#15, all countries shipping goods to North America must treat their wood packaging according to specified protocols with the goal of “significantly reducing” the risk that pests will be present.

However, as I have often blogged [see blogs under “wood packaging” category on this site] ISPM#15 has fallen short. Haack et al. found that as recently as 2020, 0.22% [1/5th of 1 percent] of the shipping containers entering the U.S. were infested by a tree-killing insect. This equates to tens of thousands of containers harboring tree-killing insects.

Worse, the data indicate that our trade partners’ compliance with the rules has deteriorated; the “approach rate” of pest-infested wood packaging fell in 2005-2006, but has since gone back up.

The most troubling offender is China. Although required since 1998 to treat its wood packaging, China consistently has one of the highest pest approach rates: it was 0.73% [or ¾ of 1%] during the 2010- 2020 period. This is three times the global average for the period. Since China supplied 40.7% of U.S. imports in 2022 [Szakonyi], or 5,655,000 containers. Thus China alone might be sending to the U.S. 30,000 containers infested with tree-killing insects. These pests threaten our urban, rural, and wildland forests and reduce forest productivity, carbon sequestration, the rural job base, water supplies and quality, and many other ecosystem services. 

ISPM#15 falls short at the global level. The fact that a pallet or crate bears the mark indicating that it complies with ISPM#15 has not proved to be reliable.

You might ask your Member of Congress or Senators to ask APHIS what steps it will take to correct the problem of Chinese non-compliance. (Remind him or her that that the Asian longhorned beetle, emerald ash borer, and many other insects of so-far lesser impact were introduced in wood packaging from China.

Asian longhorned beetle

Remind them also that the Department of Homeland Security’s Bureau of Customs and Border Protection has twice enhanced its enforcement of wood packaging rules. In 2017 it began penalizing importers of non-compliant wood packaging under Title 19 United States Code (USC) §1595a(b) or under 19 USC §1592. In 2021, it incorporated the wood packaging requirements into its voluntary C-TPAC program.)  

You might also urge them to ask APHIS what steps it is taking at the global level to improve the efficacy of ISPM#15 – or to replace it if necessary to ensure that pests are not being introduced.

spread of beech leaf disease

Imported Plants (“Plants for Planting”)

Some pest types—especially plant diseases like sudden oak death and sap-sucking insects like hemlock woolly adelgid—come on imported plants. The U.S. imported about 5 billion plants in 2021 [MacLachlan]. Recent introductions probably via this pathway include several pathogens — Phytophthoras, rapid ʻōhiʻa death in Hawai`i, beech leaf disease (established from Ohio to Maine), and boxwood blight. Insects have also been introduced on imported plants recently; one example is the elm zigzag sawfly (present in North Carolina, Virginia, and New York and Ontario). https://www.nivemnic.us/?p=4115

An analysis of data from 2009 [Liebhold et al.] found that approximately 12% of plant shipments were infested by a pest. This pest approach rate is more than 50 times higher than the 0.22% approach rate for wood packaging. APHIS has adopted several changes to its phytosanitary system for imported plants in the decade since 2009. A few studies have been published, but they have focussed on insects and excluded pathogens. We have noted that pathogens continue to be introduced via the plant trade. Therefore, please ask your Member or Senators to ask APHIS to facilitate an independent analysis of the efficacy of the agency’s current phytosanitary programs to prevent introductions of pests on important plants, with an emphasis on introductions of plant pathogens.

APHIS is responsible for preventing spread of the SOD pathogen, Phytophthora ramorum, through trade in nursery plants. In recent years California has had few detections in nurseries and little expansion in forests – but the situation suggests that this good news is probably more the result of the drought than of program efficacy. In cooler, wetter conditions in Oregon and Washington, detections in nurseries and alarming detections in the forest or plantings continue.

In 2022, the APHIS SOD Program supported detection and regulatory activities in 25 states. P. ramorum was detected at 18 establishment, 12 of which were first-time detections. The California nursery regulatory program – which is funded by APHIS – saw reduced funding in 2022. We think these cuts are unwise since this year’s very wet winter will probably lead to a new disease outbreaks. Programs in Oregon and Washington continue to detect infestations in additional retailers brought in by plants bought from other nurseries. Washington responded to four separate “trace forward” incidents, one involving more than 160 residential sites. Clearly, the federal-state program is not succeeding in eradicating P. ramorum from nurseries. Please suggest that your Congressperson and Senators ask APHIS what steps it is taking to improve the efficacy of the SOD program.

SOD-infected rhodoendron on plants in Indiana; photo by Indiana Department of Natural Resources

In the East, P. ramorum was found in three of 65 streams sampled in 10 states in 2022 (reaching across the Southeast from Mississippi through North Carolina, plus Texas, Maryland, Pennsylvania, and Illinois). One stream is troubling: a first-time detection in South Carolina, with no obvious nursery source. Since stream sampling began, P. ramorum has been detected from eight streams in four states, Alabama, Mississippi, North Carolina, and now South Carolina. The pathogen has been present in some of these streams for more than 10 years.

Oregon faces particularly high risks. Three of the four known strains of P. ramorum are established in Oregon forests. One of them, the EU1 lineage, is more aggressive than the NA1 clonal lineage already present in forests. In addition, the EU1 strain might facilitate sexual reproduction of the pathogen, thus exacerbating Oregon’s struggle to contain the disease.

As we know, introduced pests do not stay in the cities where they first arrived — they spread! Often that spread is facilitated by our movement of firewood, plants, or outdoor household goods such as patio furniture.

The beech trees so important to wildlife conservation in the Northeast are under attack by two pathogens and at risk to an insect. Most alarming is the spread – in a dozen years! — of beech leaf disease DMF from Ohio to Maine. A leaf-feeding weevil is spreading south in eastern Canada. Please suggest that your Member or Senators to ask APHIS what steps it is taking to prevent the weevil’s introduction to the U.S.

‘Ōhi‘a trees make up 80% of the biomass of forests in both wet and dry areas of the Hawaiian archipelago. It is under attack by two diseases caused by introduced pathogens first detected in 2010. ‘Ōhi‘a forests support more threatened and endangered species than any other forest system in the U.S. They also play a uniquely important role in providing other ecosystem services, including water supplies.

Asking for the Money Pest Problems Deserve


To respond effectively to these pests and to the others that will be introduced in coming years, the key APHIS programs identified above must have adequate funds. The funding levels I request – and hope you will support – are lower than I would wish, but everyone expects the Congress to refuse significant increases in funding (see table at beginning of this blog).

The Tree and Wood Pests account supports eradication and control efforts targeting principally the ALB and spongy (= gypsy) moth. Eradicating the ALB normally receives about two-thirds of the funds. The programs in Massachusetts, New York, Ohio, and South Carolina must continue until eradication succeeds.

Oregon detected the EAB in 2022. Although the state and Portland have been preparing for a decade for this eventuality, there will still be significant impacts. Four percent of Portland’s street trees are ash – more than 9,000 trees. Young ash constitute three percent of young trees in parks. Loss of Oregon’s ash will also have severe ecosystem impacts. In Willamette Valley wetlands, ash constitutes up to 100% of the forest trees. Washington and California are also concerned. Indeed, the Hudgins study identified Seattle and Takoma as likely to lose thousands of ash trees. The numerous ash in riparian forests, windbreaks, and towns of North Dakota are also at risk since the EAB is established in South Dakota, Minnesota, and Manitoba.

APHIS manages damaging pests introduced on imported plants or other items through its Specialty Crops program. The principal example is its efforts to prevent spread of the SOD pathogen through the interstate trade in nursery plants. We noted above that this program is not as successful as it should be. We support the Administration’s request for $222 million; however, you might suggest that your Member or Senator urge APHIS to allot adequate funding under this budget line to management of SOD, rapid ʻōhiʻa death pathogens in Hawai`i, and beech leaf disease and elm zig-zag sawfly in the East.

The Pest Detection program is key to the prompt detection of newly introduced pests that is critical to successful pest eradication or containment. The “Methods Development” program enables APHIS to improve development of essential detection and eradication tools.

The Administration’s request include a $1 million emergency fund. This is far below the level needed to respond when a new pest is discovered. Funding constraints have hampered APHIS’ response to past pest incursions.

Please note that many of the members of the Agriculture Appropriations Subcommittee are from states where non-native pests are probably not top of mind. It is important that everyone that knows about these threats communicate with your Member/Senators!!

Members of House or Senate Subcommittees that Fund APHIS

(Names of Senators are italicized)

STATEMEMBERAPHIS APPROPHOUSESENATE
AKLisa Murkowski  X
ALJerry Carl Katie BrittXX  X
CalifBarbara Lee David Valadao Josh Harder Diane FeinsteinX X   XX X X        X
FLDebbie Wasserman Scultz Scott FranklinX XX X 
GASanford BishopXX 
IDMike Simpson X 
ILLauren UnderwoodXX 
KSJerry MoranX X
KYMitch McConnellX X
LAJulia Letlow Ashley HinsonX XX X 
MDAndy Harris Chris Van HollenXX    X
MEChellie Pingree Susan CollinsX XX  X
MIJohn Moolenaar Gary PetersX Xx  X
MNBetty McCollumXX 
MSCindy Hyde-SmithX X
MTJon Tester Ryan ZinkeX    XX
NBDeb Fischer  X
NDJohn HoevenX X
NMMartin HeinrichX X
NVMark Amodei X 
OHMarcy KapturXX 
ORJeff MerkleyXXX
PAGuy ReschenthalerXX 
RIJack Reed  X
TXMichael Cloud Jake EllzeyXX X 
UTChris Stewart X 
VABen ClineXX 
WADan Newhouse Derek KilmerXX X 
WVShelly Moore Capito Joe Manchin  X X X
WIMark Pocan Tammy BaldwinX XX  X

SOURCES

Fei, S., R.S. Morin, C.M. Oswalt, and A.M. 2019. Biomass losses resulting from insect and disease invasions in United States forests. PNAS August 27, 2019. Vol. 116 No. 35  17371–17376

Haack R.A., J.A. Hardin, B.P. Caton and T.R. Petrice .2022. Wood borer detection rates on wood packaging materials entering the United States during different phases of ISPM#15 implementation and regulatory changes. Front. For. Glob. Change 5:1069117. doi: 10.3389/ffgc.2022.1069117

Hudgins, E.J., F.H. Koch, M.J. Ambrose, and B. Leung. 2022.  Hotspots of pest-induced US urban tree death, 2020–2050. Journal of Applied Ecology

Leung, B., M.R. Springborn, J.A. Turner, and E.G. Brockerhoff. 2014. Pathway-level risk analysis: the net present value of an invasive species policy in the US. Front Ecol Environ 2014; doi:10.1890/130311

Liebhold, A.M., E.G. Brockerhoff, L.J. Garrett, J.L. Parke, and K.O. Britton. 2012. Live Plant Imports: the Major Pathway for Forest Insect and Pathogen Invasions of the US. Frontiers in Ecology.

MacLachlan, M.J., A. M. Liebhold, T. Yamanaka, M. R. Springborn. 2022. Hidden patterns of insect establishment risk revealed from two centuries of alien species discoveries. Sci. Adv. 7, eabj1012 (2021).

Szakonyi, M. 2023. Sourcing shift from China pulls US import share to more than a decade low.